Abstract

The last decade has seen the rapid emergence of nonhydrostatic modeling as an advanced tool for studies of tsunami processes and source mechanisms that warrants a critical assessment of the state of the art and value-added features in relation to contemporary approaches. Inclusion of depth-averaged vertical velocity and nonhydrostatic pressure in the nonlinear shallow-water equations enables description of long-wave dynamics in quasi three-dimensional flows. The governing equations involve first-order derivatives, but retain higher-order properties, as in the Boussinesq-type approach. The commonly-used staggered finite difference scheme continues to provide the surface elevation and horizontal velocity, which in turn are updated by the nonhydrostatic pressure evaluated from a Poisson-type equation. In addition to having dispersion properties complementary to the governing equations, the numerical framework allows implementation of time-varying seafloor excitation from earthquake rupture, a shock-capturing scheme for discontinuous flows, and a multilevel two-way nested grid system for dispersive and shock waves. A series of numerical and laboratory benchmarks as well as a case study of the 2011 Tohoku tsunami illustrate the model capabilities in describing tsunami generation, dispersion, shoaling, bore formation, and separation-driven currents with high precision across a wide range of temporal and spatial scales for general application. These capabilities have an important role in resolving effects of detailed earthquake rupture patterns and providing accurate tsunami impact predictions with implications for warning guidance, hazard assessment, and seismological research.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request. These cover models, input files, and output data for production of the figures presented in this paper, but do not include proprietary software and third-party data.

Acknowledgments

The development of NEOWAVE was supported by the University of Hawaii Sea Grant College Program Grant NA05ORA417048 and its benchmarking by the National Tsunami Hazard Mitigation Program Grants NA14NWS4670042 and NA15NWS4670025 via Hawaii Emergency Management Agency. We thank Juan Horrillo for providing the Navier-Stokes model results of tsunami generation, Amanda Admire for the current data at Crescent City Harbor and Humboldt Bay, and Patrick Lynett for the laboratory measurements used in the 2009 NSF and 2015 NTHMP benchmarking workshops. SOEST Contribution No. 11618.

References

Abbott, M. B., A. D. McCowan, and I. R. Warren. 1984. “Accuracy of short-wave numerical models.” J. Hydraul. Eng. 110 (10): 1287–1301. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1287).
Admire, A. R., L. A. Dengler, G. B. Crawford, B. U. Uslu, J. C. Borrero, S. D. Greer, and R. I. Wilson. 2014. “Observed and modeled currents from the Tohoku-oki, Japan and other recent tsunamis in Northern California.” Pure Appl. Geophys. 171 (12): 3385–3403. https://doi.org/10.1007/s00024-014-0797-8.
Baba, T., S. Allgeyer, J. Hossen, P. R. Cummins, H. Tsushima, K. Imai, K. Yamashita, and T. Kato. 2017. “Accurate numerical simulation of the far-field tsunami caused by the 2011 Tohoku earthquake, including the effects of Boussinesq dispersion, seawater density stratification, elastic loading, and gravitational potential change.” Ocean Modell. 111 (Mar): 46–54. https://doi.org/10.1016/j.ocemod.2017.01.002.
Bai, Y., and K. F. Cheung. 2013. “Dispersion and nonlinearity of multi-layer non-hydrostatic free-surface flow.” J. Fluid Mech. 726 (Jul): 226–260. https://doi.org/10.1017/jfm.2013.213.
Bai, Y., and K. F. Cheung. 2016. “Hydrostatic versus non-hydrostatic modeling of tsunamis with implications for insular shelf and reef environments.” Coastal Eng. 117 (Nov): 32–43. https://doi.org/10.1016/j.coastaleng.2016.07.008.
Bai, Y., and K. F. Cheung. 2018. “Linear shoaling of free-surface waves in multi-layer non-hydrostatic models” Ocean Modell. 121 (Jan): 90–104. https://doi.org/10.1016/j.ocemod.2017.11.005.
Bai, Y., K. F. Cheung, Y. Yamazaki, T. Lay, and L. Ye. 2014. “Tsunami surges around the Hawaiian Islands from the 1 April 2014 North Chile Mw 8.1 earthquake.” Geophys. Res. Lett. 41 (23): 8512–8521. https://doi.org/10.1002/2014GL061686.
Bai, Y., T. Lay, K. F. Cheung, and L. Ye. 2017. “Two regions of seafloor deformation generated the tsunami for the 13 November 2016, Kaikoura, New Zealand earthquake.” Geophys. Res. Lett. 44 (13): 6597–6606. https://doi.org/10.1002/2017GL073717.
Bai, Y., C. Liu, T. Lay, K. F. Cheung, and L. Ye. 2022. “Optimizing a model of coseismic rupture for the 22 July 2022 Mw 7.8 Simeonof earthquake by exploiting acute sensitivity of tsunami excitation across the shelf break.” J. Geophys. Res. Solid Earth 127 (7): e2022JB024484. https://doi.org/10.1029/2022JB024484.
Bai, Y., Y. Yamazaki, and K. F. Cheung. 2015a. “Interconnection of multi-scale standing waves across the Pacific Basin from the 2011 Tohoku tsunami.” Ocean Modell. 92 (Jun): 183–197. https://doi.org/10.1016/j.ocemod.2015.05.005.
Bai, Y., Y. Yamazaki, and K. F. Cheung. 2015b. “NEOWAVE.” In Proc., Results of the 2015 National Tsunami Hazard Mitigation Program Model Benchmarking Workshop, 165–177. Silver Spring, MD: National Weather Service.
Bai, Y., Y. Yamazaki, and K. F. Cheung. 2018. “Convergence of multilayer nonhydrostatic models in relation to Boussinesq-type equations.” J. Waterw. Port Coastal Ocean Eng. 144 (2): 06018001. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000438.
Bletery, Q., A. Sladen, B. Delouis, M. Vallée, J. M. Nocquet, L. Rolland, and J. Jiang. 2014. “A detailed source model for the Mw 9.0 Tohoku-Oki earthquake reconciling geodesy, seismology, and tsunami records.” J. Geophys. Res. Solid Earth 119 (10): 7636–7653. https://doi.org/10.1002/2014JB011261.
Bricker, J. D., S. Munger, C. Pequignet, J. R. Wells, G. Pawlak, and K. F. Cheung. 2007. “ADCP observations of edge waves off Oahu in the wake of the November 2006 Kuril Islands tsunami.” Geophys. Res. Lett. 34 (23): L23617. https://doi.org/10.1029/2007GL032015.
Casulli, V. 1990. “Semi-implicit finite difference methods for the two-dimensional shallow water equations.” J. Comput. Phys. 86 (1): 56–74. https://doi.org/10.1016/0021-9991(90)90091-E.
Casulli, V., and G. Stelling. 1998. “Numerical simulation of 3D quasi-hydrostatic, free surface flows.” J. Hydraul. Eng. 124 (7): 678–686. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:7(678).
Catalán, P. A., et al. 2015. “The 1 April 2014 Pisagua tsunami: Observations and modeling.” Geophys. Res. Lett. 42 (8): 2918–2925. https://doi.org/10.1002/2015GL063333.
Cheung, K. F., Y. Bai, and Y. Yamazaki. 2013. “Surges around the Hawaiian Islands from the 2011 Tohoku tsunami.” J. Geophys. Res. Oceans 118 (10): 5703–5719. https://doi.org/10.1002/jgrc.20413.
Cheung, K. F., T. Lay, L. Sun, and K. Yamazaki. 2022. “Tsunami size variability with rupture depth.” Nat. Geosci. 15 (1): 33–36. https://doi.org/10.1038/s41561-021-00869-z.
Cheung, K. F., Y. Wei, Y. Yamazaki, and S. C. Yim. 2011. “Modeling of 500-year tsunamis for probabilistic design of coastal infrastructure in the Pacific Northwest.” Coastal Eng. 58 (10): 970–985. https://doi.org/10.1016/j.coastaleng.2011.05.003.
Drikakis, D., and P. K. Smolarkiewicz. 2001. “On spurious vortical structures.” J. Comput. Phys. 172 (1): 309–325. https://doi.org/10.1006/jcph.2001.6825.
Harten, A. 1983. “High resolution schemes for hyperbolic conservation laws.” J. Comput. Phys. 49 (3): 357–393. https://doi.org/10.1016/0021-9991(83)90136-5.
Hayes, G. P., D. J. Wald, and R. L. Johnson. 2012. “Slab 1.0: A three-dimensional model of global subduction zone geometries.” J. Geophys. Res. Solid Earth 117 (1): B01302. https://doi.org/10.1029/2011JB008524.
Horrillo, J. 2006. “Numerical method for tsunami calculation using full Navier-Stokes equations and the volume of fluid method.” Ph. D. thesis, Dept. of Oceanography, Univ. of Alaska.
Horrillo, J., Z. Kowalik, and Y. Shigihara. 2006. “Wave dispersion study in the Indian Ocean-Tsunami of December 26, 2004.” Mar. Geod. 29 (3): 149–166. https://doi.org/10.1080/01490410600939140.
Imamura, F., N. Shuto, and C. Goto. 1988. “Numerical simulations of the transoceanic propagation of tsunamis.” In Proc., 6th Congress of the Asian and Pacific Regional Division. Kyoto, Japan: Association of Hydraulic Research.
Jeschke, A., G. K. Pedersen, S. Vater, and J. Behrens. 2017. “Depth-averaged non-hydrostatic extension for shallow water equations with quadratic vertical pressure profile: Equivalence to Boussinesq-type equations.” Int. J. Numer. Methods Fluids 84 (10): 569–583. https://doi.org/10.1002/fld.4361.
Kajiura, K. 1963. “The leading wave of a tsunami.” Bull. Earthquake Res. Inst. 41 (3): 535–571.
Kazolea, M., A. I. Delic, I. K. Nikolos, and C. E. Synolakis. 2012. “An unstructured finite volume numerical scheme for extended 2D Boussinesq-type equations.” Coastal Eng. 69 (Nov): 42–66. https://doi.org/10.1016/j.coastaleng.2012.05.008.
Kirby, J. T., F. Shi, B. Tehranirad, J. C. Harris, and S. T. Grilli. 2013. “Dispersive tsunami waves in the ocean: Model equations and sensitivity to dispersion and Coriolis effects.” Ocean Modell. 62 (Feb): 39–55. https://doi.org/10.1016/j.ocemod.2012.11.009.
Kowalik, Z., and T. S. Murty. 1993a. Numerical modeling of ocean dynamics. Singapore: World Scientific.
Kowalik, Z., and T. S. Murty. 1993b. “Numerical simulation of two-dimensional tsunami runup.” Mar. Geod. 16 (2): 87–100. https://doi.org/10.1080/15210609309379681.
Lay, T. 2018. “A review of the rupture characteristics of the 2011 Tohoku-oki MwW 9.1 earthquake.” Tectonophysics 733 (May): 4–36. https://doi.org/10.1016/j.tecto.2017.09.022.
Lay, T., L. Ye, H. Kanamori, Y. Yamazaki, K. F. Cheung, K. Kwong, and K. D. Koper. 2013. “The October 28, 2012 Mw 7.8 Haida Gwaii underthrusting earthquake and tsunami: Slip partitioning along the Queen Charlotte Fault transpressional plate boundary.” Earth Planet. Sci. Lett. 375 (Aug): 57–70. https://doi.org/10.1016/j.epsl.2013.05.005.
LeVeque, R. J., D. L. George, and M. J. Berger. 2011. “Tsunami modelling with adaptively refined finite volume methods.” Acta Numer. 20 (5): 211–289. https://doi.org/10.1017/S0962492911000043.
Li, L., and K. F. Cheung. 2019. “Numerical dispersion in non-hydrostatic modeling of long-wave propagation.” Ocean Modell. 138 (Jun): 68–87. https://doi.org/10.1016/j.ocemod.2019.05.002.
Li, L., K. F. Cheung, H. Yue, T. Lay, and Y. Bai. 2016a. “Effects of dispersion in tsunami Green’s functions and implications for joint inversion with seismic and geodetic data: A case study of the 2010 Mentawai MW 7.8 earthquake.” Geophys. Res. Lett. 43 (21): 182–191. https://doi.org/10.1002/2016GL070970.
Li, L., T. Lay, K. F. Cheung, and L. Ye. 2016b. “Joint modeling of teleseismic and tsunami wave observations to constrain the 16 September 2015 Illapel, Chile, MW 8.3 earthquake rupture process.” Geophys. Res. Lett. 43 (9): 4303–4312. https://doi.org/10.1002/2016GL068674.
Liu, P. L.-F., Y.-S. Cho, M. J. Briggs, U. Kânoğlu, and C. E. Synolakis. 1995. “Runup of solitary waves on a circular island.” J. Fluid Mech. 302 (Nov): 259–285. https://doi.org/10.1017/S0022112095004095.
Lloyd, P. M., and P. K. Stansby. 1997. “Shallow-water flow around model conical islands of small side slope. II: Submerged.” J. Hydraul. Eng. 123 (12): 1068–1077. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:12(1068).
Lynett, P. J., et al. 2017. “Inter-model analysis of tsunami-induced coastal currents.” Ocean Modell. 114 (Jun): 14–32. https://doi.org/10.1016/j.ocemod.2017.04.003.
Lynett, P. J., D. Swigler, H. El Safty, L. Montoya, A. S. Keen, S. Son, and P. Higuera. 2019. “Three-dimensional hydrodynamics associated with a solitary wave traveling over an alongshore variable shallow shelf.” J. Waterw. Port Coastal Ocean Eng. 145 (6): 04019024. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000525.
Mader, C. L. 2004. Numerical modeling of water waves. 2nd ed. Boca Raton, FL: CRC Press.
Madsen, P. A., H. B. Bingham, and H. A. Schäffer. 2003. “Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: Derivation and analysis.” Proc. R. Soc. London, Ser. A 459 (2033): 1075–1104. https://doi.org/10.1098/rspa.2002.1067.
Madsen, P. A., D. R. Fuhrman, and B. Wang. 2006. “A Boussinesq-type method for fully nonlinear waves interacting with a rapidly varying bathymetry.” Coastal Eng. 53 (5–6): 487–504. https://doi.org/10.1016/j.coastaleng.2005.11.002.
Madsen, P. A., R. Murray, and O. R. Sørensen. 1991. “A new form of Boussinesq equations with improved linear dispersion characteristics.” Coastal Eng. 15 (4): 371–388. https://doi.org/10.1016/0378-3839(91)90017-B.
Madsen, P. A., and O. R. Sørensen. 1992. “A new form of Boussinesq equations with improved linear dispersion characteristics. Part 2: A slowly-varying bathymetry.” Coastal Eng. 18 (3–4): 183–204. https://doi.org/10.1016/0378-3839(92)90019-Q.
Mori, N., T. Takahashi, T. Yasuda, and H. Yanagisawa. 2011. “Survey of 2011 Tohoku earthquake tsunami inundation and run-up.” Geophys. Res. Lett. 38 (7): L00G14. https://doi.org/10.1029/2011GL049210.
Nwogu, O. 1993. “Alternative form of Boussinesq equations for nearshore wave propagation.” J. Waterw. Port Coastal Ocean Eng. 119 (6): 618–638. https://doi.org/10.1061/(ASCE)0733-950X(1993)119:6(618).
Okada, Y. 1985. “Surface deformation due to shear and tensile faults in a half-space.” Bull. Seismol. Soc. Am. 75 (4): 1135–1154. https://doi.org/10.1785/BSSA0750041135.
Okamoto, T., and D. R. Basco. 2006. “The relative Trough Froude Number for initiation of wave breaking: Theory, experiments and numerical model confirmation.” Coastal Eng. 53 (8): 675–690. https://doi.org/10.1016/j.coastaleng.2006.02.001.
Peregrine, D. H. 1967. “Long waves on a beach.” J. Fluid Mech. 27 (9): 815–827. https://doi.org/10.1017/S0022112067002605.
Roeber, V., and K. F. Cheung. 2012. “Boussinesq-type model for energetic breaking waves in fringing reef environments.” Coastal Eng. 70 (Dec): 1–20. https://doi.org/10.1016/j.coastaleng.2012.06.001.
Saito, T., D. Inazu, T. Miyoshi, and R. Hino. 2014. “Dispersion and nonlinear effects in the 2011 Tohoku-Oki earthquake tsunami.” J. Geophys. Res. Oceans 119 (8): 5160–5180. https://doi.org/10.1002/2014JC009971.
Saito, T., T. Matsuzawa, K. Obara, and T. Baba. 2010. “Dispersive tsunami of the 2010 Chile earthquake recorded by the high-sampling-rate ocean-bottom pressure gauges.” Geophys. Res. Lett. 37 (23): L23303. https://doi.org/10.1029/2010GL045290.
Salazar, D., et al. 2022. “Did a 3800-year-old MW9.5 earthquake trigger major social disruption in the Atacama Desert?” Sci. Adv. 8 (14): eabm2996. https://doi.org/10.1126/sciadv.abm2996.
Sato, S., and M. B. Kabiling. 1994. “A numerical simulation of beach evolution based on a nonlinear dispersive wave-current model.” In Proc., 24th Conf. Coastal Engineering, 2557–2570. Reston, VA: ASCE.
Shi, F., J. T. Kirby, J. C. Harris, J. D. Geiman, and S. T. Grilli. 2012. “A high-order adaptive time stepping TVD solver for Boussinesq modelling of breaking waves and coastal inundation.” Ocean Modell. 43–44 (Jun): 36–51. https://doi.org/10.1016/j.ocemod.2011.12.004.
Smit, P., T. Janssen, L. Holthuijsen, and J. Smith. 2014. “Non-hydrostatic modeling of surf zone wave dynamics.” Coastal Eng. 83 (Jan): 36–48. https://doi.org/10.1016/j.coastaleng.2013.09.005.
Stelling, G. S., and S. P. A. Duinmeijer. 2003. “A staggered conservative scheme for every Froude number in rapidly varied shallow water flows.” Int. J. Numer. Methods Fluids 43 (12): 1329–1354. https://doi.org/10.1002/fld.537.
Stelling, G. S., and M. Zijlema. 2003. “An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation.” Int. J. Numer. Methods Fluids 43 (1): 1–23. https://doi.org/10.1002/fld.595.
Tanioka, Y., and K. Satake. 1996. “Tsunami generation by horizontal displacement of ocean bottom.” Geophys. Res. Lett. 23 (8): 861–864. https://doi.org/10.1029/96GL00736.
Titov, V. V., and C. E. Synolakis. 1998. “Numerical modeling of tidal wave runup.” J. Waterw. Port Coastal Ocean Eng. 124 (4): 157–171. https://doi.org/10.1061/(ASCE)0733-950X(1998)124:4(157).
Tonelli, M., and M. Petti. 2012. “Shock-capturing Boussinesq model for irregular wave propagation.” Coastal Eng. 61 (Mar): 8–19. https://doi.org/10.1016/j.coastaleng.2011.11.006.
Wei, G., J. T. Kirby, S. T. Grilli, and R. Subramanya. 1995. “A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves.” J. Fluid Mech. 294 (13): 71–92. https://doi.org/10.1017/S0022112095002813.
Wei, Y., X. Z. Mao, and K. F. Cheung. 2006. “Well-balanced finite-volume model for long-wave runup.” J. Waterw. Port Coastal Ocean Eng. 132 (2): 114–124. https://doi.org/10.1061/(ASCE)0733-950X(2006)132:2(114).
Wood, N., J. M. Jones, Y. Yamazaki, K. F. Cheung, J. Brown, J. L. Jones, and N. Abdollahian. 2019. “Population vulnerability to tsunami hazards informed by previous and projected disasters: A case study of American Samoa.” Nat. Hazards 95 (3): 505–528. https://doi.org/10.1007/s11069-018-3493-7.
Yamazaki, Y., K. F. Cheung, and Z. Kowalik. 2011a. “Depth-integrated, non-hydrostatic model with grid-nesting for tsunami generation, propagation and run-up.” Int. J. Numer. Methods Fluids 67 (12): 2081–2107. https://doi.org/10.1002/fld.2485.
Yamazaki, Y., K. F. Cheung, Z. Kowalik, T. Lay, and G. Pawlak. 2012. “NEOWAVE.” In Proc., Results of the NTHMP Model Benchmarking Workshop, 239–302. Silver Spring, MD: National Weather Service.
Yamazaki, Y., K. F. Cheung, and T. Lay. 2013. “Modeling of the 2011 Tohoku near-field tsunami from finite-fault inversion of seismic waves.” Bull. Seismol. Soc. Am. 103 (2B): 1444–1455. https://doi.org/10.1785/0120120103.
Yamazaki, Y., K. F. Cheung, and T. Lay. 2018. “A self-consistent fault slip model for the 2011 Tohoku earthquake and tsunami.” J. Geophys. Res. Solid Earth 123 (2): 1435–1458. https://doi.org/10.1002/2017JB014749.
Yamazaki, Y., Z. Kowalik, and K. F. Cheung. 2009. “Depth-integrated, non-hydrostatic model for wave breaking and run-up.” Int. J. Numer. Methods Fluids 61 (5): 473–497. https://doi.org/10.1002/fld.1952.
Yamazaki, Y., T. Lay, and K. F. Cheung. 2021. “A compound faulting model for the 1975 Kalapana, Hawaii, earthquake, landslide, and tsunami.” J. Geophys. Res. Solid Earth 126 (11): e2021JB022488. https://doi.org/10.1029/2021JB022488.
Yamazaki, Y., T. Lay, K. F. Cheung, H. Yue, and H. Kanamori. 2011b. “Modeling near-field tsunami observations to improve finite-fault slip models for the 11 March 2011 Tohoku earthquake.” Geophys. Res. Lett. 38 (7): L00G15. https://doi.org/10.1029/2011GL049130.
Ye, L., T. Lay, H. Kanamori, Y. Yamazaki, and K. F. Cheung. 2021. “The 22 July 2020 MW 7.8 Shumagin seismic gap earthquake: Partial rupture of a weakly coupled megathrust.” Earth Planet. Sci. Lett. 562 (May): 116879. https://doi.org/10.1016/j.epsl.2021.116879.
Yim, S. C., M. J. Olsen, K. F. Cheung, and M. Azadbakht. 2014. “Tsunami modeling, fluid load simulation, and validation using geospatial field data.” J. Struct. Eng. 140 (8): A4014012. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000940.
Yue, H., T. Lay, L. Li, Y. Yamazaki, K. F. Cheung, L. Rivera, E. M. Hill, K. Sieh, W. Kongko, and A. Muhari. 2015. “Validation of linearity assumptions for using tsunami waveforms in joint inversion of kinematic rupture models: Application to the 2010 Mentawai Mw 7.8 tsunami earthquake.” J. Geophys. Res. Solid Earth 120 (3): 1728–1747. https://doi.org/10.1002/2014JB011721.
Zijlema, M., G. Stelling, and P. Smit. 2011. “SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coastal waters.” Coastal Eng. 58 (10): 992–1012. https://doi.org/10.1016/j.coastaleng.2011.05.015.

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 149Issue 9September 2023

History

Received: Jun 15, 2022
Accepted: Mar 10, 2023
Published online: Jul 3, 2023
Published in print: Sep 1, 2023
Discussion open until: Dec 3, 2023

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Assistant Researcher, Dept. of Ocean and Resources Engineering, Univ. of Hawaii at Manoa, Honolulu, HI 96822. ORCID: https://orcid.org/0000-0002-2285-9874. Email: [email protected]
Professor, Ocean College, Zhejiang Univ., Zhoushan, Zhejiang 316021, China. ORCID: https://orcid.org/0000-0003-3323-3348. Email: [email protected]
Linyan Li Goo [email protected]
Coastal Engineer, Oceanit Inc., 828 Fort St. Mall, Suite 600, Honolulu, HI 96813. Email: [email protected]
Professor, Dept. of Ocean and Resources Engineering, Univ. of Hawaii at Manoa, Honolulu, HI 96822 (corresponding author). ORCID: https://orcid.org/0000-0002-7435-0500. Email: [email protected]
Professor, Dept. of Earth and Planetary Sciences, Univ. of California, Santa Cruz, CA 95064. ORCID: https://orcid.org/0000-0003-2360-4213. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share