Technical Papers
Feb 26, 2019

Comparing Watershed Scale P Losses from Manure Spreading in Temperate Climates across Mechanistic Soil P Models

Publication: Journal of Hydrologic Engineering
Volume 24, Issue 5

Abstract

Watershed scale modeling is commonly used to evaluate nutrient fluxes to surface waterbodies and the appropriateness of regulatory intervention, such as the implementation of a total maximum daily load (TMDL). The Soil and Water Assessment Tool (SWAT) is a widely used watershed-scale model employed to simulate streamflow and nutrient fluxes, including phosphorus (P), from nonpoint sources, which has become ubiquitous throughout nutrient management legislation in the US. A number of studies have shown that manure spread on fields has high potential for nutrient loss in surface runoff directly following application. The authors evaluated the influence of the seasonality of hydrologic fluxes on P losses from dairy manure spread fields during this especially labile period across three mechanistic soil P loss models: SWAT v2012, SWAT v2016, and JoFlo. Calibration was performed using a DDS algorithm for SWAT v2012 and JoFlo and results of the SWAT v2012 calibration were applied to SWAT v2016. Calibration results were non-ideal; however, we propose that our methodology appropriately isolates the processes of concern and furthers the debate on what remains a critical open question. SWAT v2016 and JoFlo show a strong influence of seasonality with respect to P losses from manure-spread field, in agreement with recent field-scale studies. SWAT v2012, commonly utilized for establishing nutrient management policy, demonstrated a limited influence of seasonal hydrology on P losses, suggesting issues in the underlying mechanisms driving labile P mobilization. Our study reinforces the idea that development of hydrologic model structure should strive to parallel the intent of environmental policy.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144153. Funding was also provided by the Cayuga Lake Modeling Project (CLMP) and the Cornell Facilities Services. Thank you to Dan Fuka and Amy Collick for technical support and invaluable advice. Thanks also go to the members of the Soil and Water Lab at Cornell University.

References

Almendinger, J. E., and J. S. Ulrich. 2017. “Use of SWAT to estimate spatial scaling of phosphorus export coefficients and load reductions due to agricultural BMPS.” J. Am. Water Resour. Assoc. 53 (3): 547–561. https://doi.org/10.1111/1752-1688.12523.
Archibald, J. A. 2015. “Modeling dissolved phosphorus transport from agricultural watersheds in central New York.” Ph.D. dissertation, Dept. of Biological and Environmental Engineering, Cornell Univ.
Archibald, J. A., B. P. Buchanan, D. R. Fuka, C. B. Georgakakos, S. W. Lyon, and M. T. Walter. 2014. “A simple, regionally parameterized model for predicting nonpoint source areas in the northeastern US.” J. Hydrol.: Reg. Stud. 1 (2): 74–91. https://doi.org/10.1016/j.ejrh.2014.06.003.
Archibald, J. A., and M. T. Walter. 2014. “Do energy-based PET models require more input data than temperature-based models? An evaluation at four humid Fluxnet sites.” J. Am. Water Resour. Assoc. 50 (2): 497–508. https://doi.org/10.1111/jawr.12137.
Arnold, J. G., R. Srinivasan, R. S. Muttiah, and J. R. Williams. 1998. “Large area hydrologic modeling and assessment. Part I: Model development.” J. Am. Water Resour. Assoc. 34 (1): 73–89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x.
Baveye, P., and C. W. Boast1999. “Physical scales and spatial predictability of transport processes in the environment.” In Assessment of non-point source pollution in the vadose zone, edited by D. L. Corwin, K. Loague, and T. R. Ellsworth, 261–280. Washington, DC: American Geophysical Union.
Beven, K. J. 2011. Rainfall-runoff modelling: The primer. New York: Wiley.
Boluwade, A., and C. Madramootoo. 2013. “Modeling the impacts of spatial heterogeneity in the castor watershed on runoff, sediment, and phosphorus loss using SWAT. Part I: Impacts of spatial variability of soil properties.” Water Air Soil Pollut. 224 (10), https://doi.org/10.1007/s11270-013-1692-0.
Carpenter, S. R., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley, and V. H. Smith. 1998. “Nonpoint pollution of surface waters with phosphorus and nitrogen.” Ecol. Appl. 8 (3): 559. https://doi.org/10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2.
Chaubey, I., K. W. Migliaccio, C. H. Green, J. G. Arnold, and R. Srinivasan. 2006. “Phosphorus modeling in soil and water assessment tool (SWAT) model.” In Modeling phosphorus in the environment, edited by D. E. Radcliffe and M. L. Cabrera, 163–187. Boca Raton, FL: CRC Press.
Clark, M. P., A. G. Slater, D. E. Rupp, R. A. Woods, J. A. Vrugt, H. V. Gupta, T. Wagener, and L. E. Hay. 2008. “Framework for understanding structural errors (FUSE): A modular framework to diagnose differences between hydrological models” Water Resour. Res. 44 (12): 1–14. https://doi.org/10.1029/2007WR006735.
Collick, A. S., et al. 2016. “Improved simulation of edaphic and manure phosphorus loss in SWAT.” J. Environ. Qual. 45 (4): 1215–1225. https://doi.org/10.2134/jeq2015.03.0135.
Collick, A. S., D. R. Fuka, P. J. A. Kleinman, A. R. Buda, J. L. Weld, M. J. White, T. L. Veith, R. B. Bryant, C. H. Bolster, and Z. M. Easton. 2015. “Predicting phosphorus dynamics in complex terrains using a variable source area hydrology model: Modelling P dynamics in complex terrains.” Hydrol. Processes 29 (4): 588–601. https://doi.org/10.1002/hyp.10178.
Cornell NRCC (Northeast Regional Climate Center). 2015. “State and regional analyses.” Accessed September 15, 2017. https://www.nrcc.cornell.edu/regional/regional/regional.html.
Cornell University. 2016. “Explore Cornell: Home gardening: Vegetable growing guides.” Accessed August 20, 2016. http://gardening.cals.cornell.edu/.
Dahlke, H. E., Z. M. Easton, S. W. Lyon, M. Todd Walter, G. Destouni, and T. S. Steenhuis. 2012. “Dissecting the variable source area concept: Subsurface flow pathways and water mixing processes in a hillslope.” J. Hydrol. 420–421: 125–141. https://doi.org/10.1016/j.jhydrol.2011.11.052.
Dechmi, F., J. Burguete, and A. Skhiri. 2012. “SWAT application in intensive irrigation systems: Model modification, calibration and validation.” J. Hydrol. 470–471: 227–238. https://doi.org/10.1016/j.jhydrol.2012.08.055.
Dennedy-Frank, P. J., R. L. Muenich, I. Chaubey, and G. Ziv. 2016. “Comparing two tools for ecosystem service assessments regarding water resources decisions.” J. Environ. Manage. 177: 331–340. https://doi.org/10.1016/j.jenvman.2016.03.012.
Dunne, T., and R. D. Black. 1970. “Partial area contributions to storm runoff in a small New England watershed.” Water Resour. Res. 6 (5): 1296–1311. https://doi.org/10.1029/WR006i005p01296.
Easton, Z. M., D. R. Fuka, M. T. Walter, D. M. Cowan, E. M. Schneiderman, and T. S. Steenhuis. 2008a. “Re-conceptualizing the soil and water assessment tool (SWAT) model to predict runoff from variable source areas.” J. Hydrol. 348 (3–4): 279–291. https://doi.org/10.1016/j.jhydrol.2007.10.008.
Easton, Z. M., P. Gérard-Marchant, M. T. Walter, A. M. Petrovic, and T. S. Steenhuis. 2007a. “Hydrologic assessment of an urban variable source watershed in the northeast United States: Hydrologic assessment of a VSA watershed.” Water Resour. Res. 43 (3): 1–18. https://doi.org/10.1029/2006WR005076.
Easton, Z. M., P. Gérard-Marchant, M. T. Walter, A. M. Petrovic, and T. S. Steenhuis. 2007b. “Identifying dissolved phosphorus source areas and predicting transport from an urban watershed using distributed hydrologic modeling: Urban dissolved phosphorous source areas.” Water Resour. Res. 43 (11): 1–16. https://doi.org/10.1029/2006WR005697.
Easton, Z. M., M. T. Walter, D. R. Fuka, E. D. White, and T. S. Steenhuis. 2011. “A simple concept for calibrating runoff thresholds in quasi-distributed variable source area watershed models.” Hydrol. Processes 25 (20): 3131–3143. https://doi.org/10.1002/hyp.8032.
Easton, Z. M., M. T. Walter, and T. S. Steenhuis. 2008c. “Combined monitoring and modeling indicate the most effective agricultural best management practices.” J. Environ. Qual. 37 (5): 1798–1809. https://doi.org/10.2134/jeq2007.0522.
Edwards, L. M., J. R. Burney, and P. A. Frame. 1995. “Rill sediment transport on a Prince Edward Island (Canada) fine sandy loam.” Soil Technol. 8 (2): 127–138. https://doi.org/10.1016/0933-3630(95)00009-2.
Fischer, G., F. Nachtergaele, S. Prieler, H. T. van Velthuizen, L. Verelst, and D. Wiberg. 2008. Global agro-ecological zones assessment for agriculture (GAEZ 2008). Laxenburg, Austria: IIASA.
Forstall, R. L. 1995. “Population of counties by decennial census: 1900 to 1990.” Accessed August 13, 2007. http://www.census.gov/population/cencounts/ny190090.txt.
Francesconi, W., R. Srinivasan, E. Pérez-Miñana, S. P. Willcock, and M. Quintero. 2016. “Using the soil and water assessment tool (SWAT) to model ecosystem services: A systematic review.” J. Hydrol. 535 (Apr): 625–636. https://doi.org/10.1016/j.jhydrol.2016.01.034.
Fry, J., G. Xian, S. Jin, J. Dewitz, C. Homer, L. Yang, C. Barnes, N. Herold, and J. Wickham. 2011. “Completion of the 2006 national land cover database for the conterminous United States” Photogramm. Eng. Remote Sens. 77 (9): 858–864.
Fuka, D. R., and Z. M. Easton. 2016. “TopoSWAT source.” Accessed August 15, 2014. https://doi.org/10.6084/m9.figshare.1342823.
Fuka, D. R., M. T. Walter, C. MacAlister, T. S. Steenhuis, and Z. M. Easton. 2014. “SWATmodel: A multi-operating system, multi-platform SWAT model package in R.” J. Am. Water Resour. Assoc. 50 (5): 1349–1353. https://doi.org/10.1111/jawr.12170.
Georgakakos, C. B., C. K. Morris, and M. T. Walter. 2018. “Challenges and opportunities with on-farm research: Total and soluble reactive stream phosphorus before and after implementation of a cattle-exclusion, riparian buffer.” Front. Environ. Sci. 6: 71. https://doi.org/10.3389/fenvs.2018.00071.
Gérard-Marchant, P., M. T. Walter, and T. S. Steenhuis. 2005. “Simple models for phosphorus loss from manure during rainfall.” J. Environ. Qual. 34 (3): 872. https://doi.org/10.2134/jeq2003.0097.
Gesch, D., M. Oimoen, S. Greenlee, C. Nelson, M. Steuck, and D. Tyler. 2002. “The national elevation dataset” Photogramm. Eng. Remote Sens. 68 (1): 5–11.
Gesch, D. B. 2007. “The national elevation dataset.” In Digital elevation model technologies and applications: The DEM users manual, edited by D. Maune, 2nd ed., 99–118. Bethesda, MD: American Society for Photogrammetry and Remote Sensing.
Han, C.-W., S.-G. Xu, J.-W. Liu, and J.-J. Lian. 2010. “Nonpoint-source nitrogen and phosphorus behavior and modeling in cold climate: A review.” Water Sci. Technol. 62 (10): 2277. https://doi.org/10.2166/wst.2010.464.
Hergert, G. W., S. D. Klausner, D. R. Bouldin, and P. J. Zwerman. 1981. “Effects of dairy manure on phosphorus concentrations and losses in tile effluent.” J. Environ. Qual. 10 (3): 345. https://doi.org/10.2134/jeq1981.00472425001000030018x.
Herrmann, A., and E. Witter. 2002. “Sources of C and N contributing to the flush in mineralization upon freeze–thaw cycles in soils.” Soil Biol. Biochem. 34 (10): 1495–1505. https://doi.org/10.1016/S0038-0717(02)00121-9.
Keeler, B., B. J. Dalzell, D. Pennington, K. Johnson, and S. Polasky. 2013. “Comparing SWAT and InVEST models for water yield and nutrient export: When is a simple model good enough for decision support?” In AGU Fall Meeting Abstracts, 21. Washington, DC: The American Geophysical Union.
Kirsch, K., A. Kirsch, and J. G. Arnold. 2002. “Predicting sediment and phosphorus loads in the Rock River basin using SWAT.” Forest 971 (10): 1757. https://doi.org/10.13031/2013.11427.
Klausner, S. D., P. J. Zwerman, and D. F. Ellis. 1976. “Nitrogen and phosphorus losses from winter disposal of dairy manure.” J. Environ. Qual. 5 (1): 47–49. https://doi.org/10.2134/jeq1976.00472425000500010010x.
Kleinman, P. J. A., and A. N. Sharpley. 2003. “Effect of broadcast manure on runoff phosphorus concentrations over successive rainfall events.” J. Environ. Qual. 32 (3): 1072–1081. https://doi.org/10.2134/jeq2003.1072.
Kleinman, P. J. A., A. N. Sharpley, T. L. Veith, R. O. Maguire, and P. A. Vadas. 2004. “Evaluation of phosphorus transport in surface runoff from packed soil boxes.” J. Environ. Qual. 33 (4): 1413–1423. https://doi.org/10.2134/jeq2004.1413.
Kleinman, P. J. A., A. M. Wolf, A. N. Sharpley, D. B. Beegle, and L. S. Saporito. 2005. “Survey of water-extractable phosphorus in livestock manures.” Soil Sci. Soc. Am. J. 69 (3): 701. https://doi.org/10.2136/sssaj2004.0099.
Knighton, J., E. Menzies Pluer, A. R. Prestigiacomo, S. W. Effler, and M. T. Walter. 2017a. “Topographic wetness guided dairy manure applications to reduce stream nutrient loads in Central New York, USA.” J. Hydrol.: Reg. Stud. 14 (Dec): 67–82. https://doi.org/10.1016/j.ejrh.2017.11.003.
Knighton, J., S. M. Saia, C. K. Morris, J. A. Archiblad, and M. T. Walter. 2017b. “Ecohydrologic considerations for modeling of stable water isotopes in a small intermittent watershed.” Hydrol. Processes 31 (13): 2438–2452. https://doi.org/10.1002/hyp.11194.
Knighton, J., S. Steinschneider, and M. T. Walter. 2017c. “A vulnerability-based, bottom-up assessment of future riverine flood risk using a modified peaks-over-threshold approach and a physically based hydrologic model: Vulnerability-based flood risk analysis.” Water Resour. Res. 53 (12): 10043–10064. https://doi.org/10.1002/2017WR021036.
Komiskey, M. J., T. D. Stuntebeck, D. R. Frame, and F. W. Madison. 2011. “Nutrients and sediment in frozen-ground runoff from no-till fields receiving liquid-dairy and solid-beef manures.” J. Soil Water Conserv. 66 (5): 303–312. https://doi.org/10.2489/jswc.66.5.303.
Legates, D. R., and G. J. McCabe. 1999. “Evaluating the use of ‘goodness-of-fit’ Measures in hydrologic and hydroclimatic model validation.” Water Resour. Res. 35 (1): 233–241. https://doi.org/10.1029/1998WR900018.
Leta, O. T., A. van Griensven, and W. Bauwens. 2017. “Effect of single and multisite calibration techniques on the parameter estimation, performance, and output of a SWAT model of a spatially heterogeneous catchment.” J. Hydrol. Eng. 22 (3): 05016036. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001471.
Lewis, T. W., and J. C. Makarewicz. 2009. “Winter application of manure on an agricultural watershed and its impact on downstream nutrient fluxes.” Supplement, J. Great Lakes Res. 35 (S1): 43–49. https://doi.org/10.1016/j.jglr.2008.08.003.
Lu, S., H. E. Andersen, H. Thodsen, G. H. Rubæk, and D. Trolle. 2015. “Extended SWAT model for dissolved reactive phosphorus transport in tile-drained fields and catchments.” Agric. Water Manage. 175 (Sep): 78–90. https://doi.org/10.1016/j.agwat.2015.12.008.
Lyon, S. W., M. T. Walter, P. Gérard-Marchant, and T. S. Steenhuis. 2004. “Using a topographic index to distribute variable source area runoff predicted with the SCS curve-number equation.” Hydrol. Processes 18 (15): 2757–2771. https://doi.org/10.1002/hyp.1494.
McDonnell, J. 2005. “Discussion of ‘Simple Estimation of Prevalence of Hortonian Flow in New York City Watersheds’ by M. Todd Walter, Vishal K. Mehta, Alexis M. Marrone, Jan Boll, Pierre Gerard-Marchant, Tammo S. Steenhuis, and Michael F. Walter.” J. Hydrol. Eng. 10 (2): 168–169. https://doi.org/10.1061/(ASCE)1084-0699(2005)10:2(168).
McMillan, H., D. Tetzlaff, M. Clark, and C. Soulsby. 2012. “Do time-variable tracers aid the evaluation of hydrological model structure? A multimodel approach” Water Resour. Res. 48 (5): 1–18. https://doi.org/10.1029/2011WR011688.
Me, W., J. M. Abell, and D. P. Hamilton. 2015. “Modelling water, sediment and nutrient fluxes from a mixed land-use catchment in New Zealand: Effects of hydrologic conditions on SWAT model performance.” Hydrol. Earth Syst. Sci. Discuss. 12 (4): 4315–4352. https://doi.org/10.5194/hessd-12-4315-2015.
Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith. 2007. “Model evaluation guidelines for systematic quantification of accuracy in watershed simulations.” Trans. ASABE 50 (3): 885–900. https://doi.org/10.13031/2013.23153.
Nash, J. E., and J. V. Sutcliffe. 1970. “River flow forecasting through conceptual models. Part I: A discussion of principles.” J. Hydrol. 10 (3): 282–290. https://doi.org/10.1016/0022-1694(70)90255-6.
Needelman, B. A., W. J. Gburek, G. W. Petersen, A. N. Sharpley, and P. J. A. Kleinman. 2004. “Surface runoff along two agricultural hillslopes with contrasting soils.” Soil Sci. Soc. Am. J. 68 (3): 914–923. https://doi.org/10.2136/sssaj2004.9140.
Neitsch, S. L., J. G. Arnold, J. R. Kiniry, and J. R. Williams. 2011. Soil and water assessment tool theoretical documentation version 2009. College Station, TX: Texas Water Resources Institute.
Oerter, E. J., and G. Bowen. 2017. “In situ monitoring of H and O stable isotopes in soil water reveals ecohydrologic dynamics in managed soil systems” Ecohydrology 10 (4): e1841. https://doi.org/10.1002/eco.1841.
O’Neil, J. M., T. W. Davis, M. A. Burford, and C. J. Gobler. 2012. “The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change.” Harmful Algae 14 (Feb): 313–334. https://doi.org/10.1016/j.hal.2011.10.027.
Osborne, L. L., and D. A. Kovacic. 1993. “Riparian vegetated buffer strips in water-quality restoration and stream management.” Freshwater Biol. 29 (2): 243–258. https://doi.org/10.1111/j.1365-2427.1993.tb00761.x.
Pezet, F., J.-M. Dorioz, P. Quetin, M. Lafforgue, and D. Trevisan. 2013. “Using SWAT-VSA to predict diffuse phosphorus pollution in an agricultural catchment with several aquifers.” J. Hydrol. Eng. 19 (7): 1462–1470. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000914.
Pizzeghello, D., A. Berti, S. Nardi, and F. Morari. 2011. “Phosphorus forms and P-sorption properties in three alkaline soils after long-term mineral and manure applications in north-eastern Italy.” Agric. Ecosyst. Environ. 141 (1): 58–66. https://doi.org/10.1016/j.agee.2011.02.011.
Pizzeghello, D., A. Berti, S. Nardi, and F. Morari. 2016. “Relationship between soil test phosphorus and phosphorus release to solution in three soils after long-term mineral and manure application.” Agric. Ecosyst. Environ. 233 (Oct): 214–223. https://doi.org/10.1016/j.agee.2016.09.015.
Prestigiacomo, A. R., S. W. Effler, R. K. Gelda, D. A. Matthews, M. T. Auer, B. E. Downer, A. Kuczynski, and M. T. Walter. 2016. “Apportionment of bioavailable phosphorus loads entering Cayuga Lake, New York.” J. Am. Water Resour. Assoc. 52 (1): 31–47. https://doi.org/10.1111/1752-1688.12366.
Rascher, C. M., C. T. Driscoll, and N. E. Peters. 1987. “Concentration and flux of solutes from snow and forest floor during snowmelt in the West-Central Adirondack region of New York.” Biogeochemistry 3 (1–3): 209–224. https://doi.org/10.1007/BF02185193.
R Development Core Team. 2008. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Schaefli, B., C. J. Harman, M. Sivapalan, and S. J. Schymanski. 2010. “Hydrologic predictions in a changing environment: Behavioral modeling.” Hydrol. Earth Syst. Sci. Discuss. 7 (5): 7779–7808. https://doi.org/10.5194/hessd-7-7779-2010.
Shaw, S. B., R. D. Marjerison, D. R. Bouldin, J.-Y. Parlange, and M. T. Walter. 2011. “Simple model of changes in stream chloride levels attributable to road salt applications.” J. Environ. Eng. 138 (1): 112–118. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000458.
Skaggs, R. W., M. A. Breve, and J. W. Gilliam. 1994. “Hydrologic and water quality impacts of agricultural drainage.” Crit. Rev. Environ. Sci. Technol. 24 (1): 1–32. https://doi.org/10.1080/10643389409388459.
Srinivasan, M. S., R. B. Bryant, M. P. Callahan, and J. L. Weld. 2006. “Manure management and nutrient loss under winter conditions: A literature review.” J. Soil Water Conserv. 61 (4): 200–209.
Srinivasan, M. S., W. J. Gburek, and J. M. Hamlett. 2002. “Dynamics of stormflow generation? A hillslope-scale field study in east-central Pennsylvania, USA.” Hydrol. Processes 16 (3): 649–665. https://doi.org/10.1002/hyp.311.
Stedinger, J. R., R. M. Vogel, S. U. Lee, and R. Batchelder. 2008. “Appraisal of the generalized likelihood uncertainty estimation (GLUE) method.” Water Resour. Res. 44 (12): 1–17. https://doi.org/10.1029/2008WR006822.
Steenhuis, T. S., G. D. Bubenzer, J. C. Converse, and M. F. Walter. 1981. “Winter-spread manure nitrogen loss.” Trans. ASAE 24 (2): 436–441. https://doi.org/10.13031/2013.34270.
Storey, H. C. 1955. “Frozen soil and spring and winter floods.” In Water: The yearbook of agriculture, 179–184. Washington, DC: The United States Department of Agriculture.
Thornthwaite, C. W., and J. R. Mather. 1955. Vol. 8 of The water balance. Centerton, NJ: Laboratory of Climatology.
Tolson, B. A., and C. A. Shoemaker. 2007a. “Cannonsville reservoir watershed SWAT2000 model development, calibration and validation.” J. Hydrol. 337 (1–2): 68–86. https://doi.org/10.1016/j.jhydrol.2007.01.017.
Tolson, B. A., and C. A. Shoemaker. 2007b. “Dynamically dimensioned search algorithm for computationally efficient watershed model calibration.” Water Resour. Res. 43 (1): 1–16. https://doi.org/10.1029/2005WR004723.
USDA, NASS (National Agricultural Statistics Service), Research and Development Division, Geospatial Information Branch, and Spatial Analysis Research Section. 2010. “2010 New York cropland data layer.” Accessed August 15, 2014. https://www.nass.usda.gov/research/Cropland/SARS1a.htm.
Vadas, P. A., W. J. Gburek, A. N. Sharpley, P. J. A. Kleinman, P. A. Moore, M. L. Cabrera, and R. D. Harmel. 2007. “A model for phosphorus transformation and runoff loss for surface-applied manures.” J. Environ. Qual. 36 (1): 324–332. https://doi.org/10.2134/jeq2006.0213.
Vadas, P. A., B. C. Joern, and P. A. Moore. 2012. “Simulating soil phosphorus dynamics for a phosphorus loss quantification tool.” J. Environ. Qual. 41 (6): 1750–1757. https://doi.org/10.2134/jeq2012.0003.
Vadas, P. A., W. E. Jokela, D. H. Franklin, and D. M. Endale. 2011. “The effect of rain and runoff when assessing timing of manure application and dissolved phosphorus loss in runoff.” J. Am. Water Resour. Assoc. 47 (4): 877–886. https://doi.org/10.1111/j.1752-1688.2011.00561.x.
Vadas, P. A., and M. J. White. 2010. “Validating soil phosphorus routines in the SWAT model.” Trans. Asabe 53 (5): 1469–1476. https://doi.org/10.13031/2013.34897.
van der Velde, Y., I. Heidbüchel, S. W. Lyon, L. Nyberg, A. Rodhe, K. Bishop, and P. A. Troch. 2015. “Consequences of mixing assumptions for time-variable travel time distributions” Hydrol. Processes 29 (16): 3460–3474. https://doi.org/10.1002/hyp.10372.
Vaz, M. R., A. C. Edwards, C. A. Shand, and M. S. Cresser. 1994. “Changes in the chemistry of soil solution and acetic-acid extractable P following different types of freeze/thaw episodes.” Eur. J. Soil Sci. 45 (3): 353–359. https://doi.org/10.1111/j.1365-2389.1994.tb00519.x.
Walter, M. T., E. S. Brooks, D. K. McCool, L. G. King, M. Molnau, and J. Boll. 2005. “Process-based snowmelt modeling: Does it require more input data than temperature-index modeling?” J. Hydrol. 300 (1): 65–75. https://doi.org/10.1016/j.jhydrol.2004.05.002.
Walter, M. T., E. S. Brooks, M. F. Walter, T. S. Steenhuis, C. A. Scott, and J. Boll. 2001. “Evaluation of soluble phosphorus loading from manure-applied fields under various spreading strategies.” J. Soil Water Conserv. 56 (4): 329–335.
Walter, M. T., T. S. Steenhuis, V. K. Mehta, D. Thongs, M. Zion, and E. Schneiderman. 2002. “Refined conceptualization of TOPMODEL for shallow subsurface flows.” Hydrol. Processes 16 (10): 2041–2046. https://doi.org/10.1002/hyp.5030.
Walter, M. T., M. F. Walter, E. S. Brooks, T. S. Steenhuis, J. Boll, and K. Weiler. 2000. “Hydrologically sensitive areas: Variable source area hydrology implications for water quality risk assessment.” J. Soil Water Conserv. 55 (3): 277–284.
Woodbury, J. D., C. A. Shoemaker, Z. M. Easton, and D. M. Cowan. 2014. “Application of SWAT with and without variable source area hydrology to a large watershed.” J. Am. Water Resour. Assoc. 50 (1): 42–56. https://doi.org/10.1111/jawr.12116.
Young, R. A., and C. K. Mutchler. 1976. “Pollution potential of manure spread on frozen ground.” J. Environ. Qual. 5 (2): 174–179. https://doi.org/10.2134/jeq1976.00472425000500020013x.
Zeckoski, R. W., M. D. Smolen, D. N. Moriasi, J. R. Frankenberger, and G. W. Feyereisen. 2015. “Hydrologic and water quality terminology as applied to modeling.” Trans. ASABE 58 (6): 1619–1635. https://doi.org/10.13031/trans.58.10713.
Zuzel, J. F., and J. L. Pikul. 1987. “Infiltration into a seasonally frozen agricultural soil.” J. Soil Water Conserv. 42 (6): 447–450.
Zuzel, J. F., J. L. Pikul, and P. E. Rasmussen. 1990. “Tillage and fertilizer effects on water infiltration.” Soil Sci. Soc. Am. J. 54 (1): 205. https://doi.org/10.2136/sssaj1990.03615995005400010032x.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 24Issue 5May 2019

History

Received: Mar 26, 2018
Accepted: Nov 16, 2018
Published online: Feb 26, 2019
Published in print: May 1, 2019
Discussion open until: Jul 26, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Graduate Student, Dept. of Biological and Environmental Engineering, Cornell Univ., 111 Wing Rd., Ithaca, NY 14850 (corresponding author). ORCID: https://orcid.org/0000-0003-4883-8091. Email: [email protected]
James O. Knighton
Graduate Student, Dept. of Biological and Environmental Engineering, Cornell Univ., Ithaca, NY 14850.
Josephine A. Archibald, Ph.D.
Research Associate, New York State Water Resources Institute, Cornell Univ., Ithaca, NY 14850.
M. Todd Walter, Ph.D., M.ASCE
Professor, Dept. of Biological and Environmental Engineering, Cornell Univ., Ithaca, NY 14850.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share