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Abstract: This study numerically investigates and compares the secondary currents, velocity dips, turbulence properties, and boundary shear
stresses in supercritical narrow open channel flows (OCFs) and in narrow duct flows (DFs) using an updated Launder–Reece–Rodi Reynolds
stress model in OpenFOAM, which was validated previously for supercritical flows using experimental data. Six steady state simulations
were performed at a bulk velocity of 2.31 m=s covering Reynolds numbers from 3.08 × 105 to 6.16 × 105 and aspect ratios (width to flow
depth) of 1.0. 1.25, and 2.0, which in combination with the observed Froude numbers from 1.65 to 2.33 for OCFs are comparable to sediment
bypass tunnel flows. Although free surface produces greater maximum secondary flows, the top wall in DFs creates stronger bulging of the
longitudinal velocity above the velocity dips, which generates marginally higher maximum longitudinal velocity and significantly higher
velocity fluctuations compared to OCFs. Two pairs of corner vortices are observed in each half width for DFs. However, such vortices differ in
OCFs, in which the reduction of aspect ratio develops intermediate vortices. Such differences in the secondary currents are interrelated to the
observed variations in the distributions of longitudinal velocity and Reynolds stresses. Higher average bed and sidewall shear stresses are
obtained for DFs than for OCFs. The bottom vortices undulate the bed shear stress distributions. Similarly, the sidewall corner vortices (for
DFs) or intermediate vortices and inner secondary vortices (for OCFs) undulate the wall shear stress distributions. These undulations are
further influenced by the aspect ratio. Moreover, the flow characteristics below the mid depth observed for OCFs are comparable to those
obtained for DFs, especially for the square cross sections with aspect ratio of 1.0. DOI: 10.1061/JHEND8.HYENG-13837. This work is
made available under the terms of the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.
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Introduction

Turbulence-driven secondary currents or “secondary currents of
Prandtl’s second kind” (Dey 2014; Nezu and Nakagawa 1993;
Prandtl 1952) are observed in fully developed turbulent and straight
open channel flows (OCFs) and pressurized duct flows (DFs)
due to the turbulence anisotropy and nonhomogeneity. The solid

boundaries and the free surface are responsible for the generation
of these secondary currents in smooth or homogeneously rough
bedded and walled symmetric cross sections. The free surface ef-
fect deviates the three-dimensional (3D) OCF characteristics from
those observed for DFs with a solid top boundary. In narrow OCFs
with aspect ratio ar ≤ 5, where ar is the ratio between the channel
width b and the flow depth h, such secondary currents reach the
channel center and alter the flow characteristics across the whole
channel width (Auel et al. 2014; Nezu and Nakagawa 1993; Yang
et al. 2004). The redistribution of high- and low-momentum fluids
across the width causes velocity dips and undulation in the bed
shear stress distribution, which can influence the sediment trans-
port (Albayrak and Lemmin 2011; Auel et al. 2014; Demiral et al.
2020; Einstein and Li 1958; Kang and Choi 2006; Naot and Rodi
1982; Nezu and Nakagawa 1993), the erosion, and the invert abra-
sion for open channels and tunnels carrying high-speed sediment
(bed load) laden flows, e.g., sediment bypass tunnels (SBTs) [pri-
marily OCFs, althoughMudMountain, Patrind, and Rizzanese SBTs
can have pressurized flow depending on the operational conditions
(Demiral-Yüzügüllü 2021; Müller-Hagmann 2018)]. A better design
of these structures for optimal hydraulic conditions to avoid sedi-
ment deposition and to minimize invert abrasion demands charac-
terization of the complex 3D flow and precise predictions of the
boundary shear stress, at which the present study aims by a numeri-
cal investigation.

Thomson (1879) initiated the discovery of secondary currents
and the velocity dip phenomenon. Later, Einstein and Li (1958)
expressed the development of secondary flows using an analytical
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solution for the vorticity. Nezu and Nakagawa (1993) provided a
detailed investigation on 3D turbulent flow characteristics involving
turbulence-driven secondary currents. Their elaborative analysis
on the correlation between the Reynolds normal and shear stresses
and the secondary flows stipulates that the generation of secondary
flows is primarily governed by the anisotropy of the Reynolds nor-
mal stresses acting on the cross-sectional plane. This widely ac-
cepted mechanism of the secondary flow generation is supported
by many studies, for example, Demuren and Rodi (1984) and Nezu
and Nakagawa (1984), but differs from an alternate finding pro-
vided by Gessner (1973). In recent times, Nikora and Roy (2012)
recommended the simultaneous use of multiple approaches out of
“(1) the time-(ensemble)-averaged momentum equation or Reynolds-
averaged Navier–Stokes (RANS) equation, (2) the energy balance
equation for the mean flow, (3) the energy balance equation for the
turbulence, and (4) the time-averaged vorticity equation,” which can
demonstrate the time-averaged secondary currents.

The secondary currents observed in straight OCFs differ from
those found in DFs. In narrow OCFs, generally the free surface
vortex, marked as I in Fig. 1(a), spatially dominates the bottom

vortex, marked as IV. However, such domination reduces with
a reduction of ar, which increases the influence of sidewall on
the flow, enlarges the bottom vortex, and narrows and deepens
the free surface vortex (Kadia et al. 2022a). For very narrow OCFs
(ar ≤ 1.05), Kadia et al. (2022a) found a fully developed inter-
mediate vortex, marked as III in Fig. 1(c), that separates from the
free surface vortex at such lower aspect ratios. Previously, Naot
and Rodi (1982) and Broglia et al. (2003) found a similar vortex
for ar ¼ 0.6 [Nikuradse’s channel (Nikuradse 1926)] and ar ¼ 1.0
using the algebraic stress model (ASM) and large-eddy simulation
(LES), respectively. Although Nezu and Rodi (1985) did not de-
tect any intermediate vortex for ar ¼ 1.0 from the laser Doppler
anemometer (LDA) measurements, possibly due to a lack of high-
resolution results, Demiral et al. (2020) anticipated such a vortex
using the two-dimensional LDA data for similar ar values. In con-
trast, DFs consist a pair of counterrotating corner vortices at each
corner, marked as Vand VI in Fig. 1(b) (Naot and Rodi 1982; Nezu
and Nakagawa 1986, 1993; Pirozzoli et al. 2018). The domina-
tion of free surface vortex in OCFs produces stronger secondary
flows; the maximum secondary velocity varies from 1.5% to 3% of

(a)

(b) (c)

Fig. 1. Secondary currents in one half of straight narrow open channels and square duct: (a) rectangular channel flow with ar around 2; (b) square duct
flow with ar ¼ 1 according to Naot and Rodi (1982), Nezu and Nakagawa (1986, 1993), and Pirozzoli et al. (2018); and (c) square channel flow with
ar ¼ 1, C/L = centerline of the channel or duct. [Reprinted (a and c) from Kadia et al. (2022a) under Creative Commons-BY-4.0 license (https://
creativecommons.org/licenses/by/4.0/).]
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maximum longitudinal velocityUmax or bulk velocity Ū (Albayrak
and Lemmin 2011; Broglia et al. 2003; Kadia et al. 2022a; Naot
and Rodi 1982; Nezu and Nakagawa 1986, 1993; Nezu and Rodi
1985; Tominaga et al. 1989), whereas the maximum secondary ve-
locity ranges from 1% to 2% in DFs (Melling and Whitelaw 1976;
Naot and Rodi 1982; Nezu and Nakagawa 1993; Pirozzoli et al.
2018). In addition, a comparatively smaller inner secondary vortex
is observed at the mixed corner (formed by solid wall and free
surface) for OCFs, which is marked as II in Figs. 1(a and c). Sev-
eral simulations (Broglia et al. 2003; Grega et al. 1995; Kadia et al.
2021, 2022a, c, 2024; Kang and Choi 2006) and an experiment
study (Grega et al. 2002) have confirmed such small scale vortex
in rectangular channel flows.

Traditionally, the flow properties found in one-half width of an
open channel (depth ¼ h and width ¼ b=2) are compared with the
corner flow characteristics observed in a duct (depth ¼ h=2 and
width ¼ b=2), e.g., Fig. 1(a) versus Fig. 1(b). However, the free
surface damping and redistribution of the turbulence intensities
(Komori et al. 1982) deviate the free surface condition from the
symmetry plane condition used at the mid depth in a duct flow
(Cokljat and Younis 1995). In such comparison, the velocity fields,
the turbulence characteristics, and the bed shear stress undulation
observed for an OCF with ar ≈ 2 significantly differed from those
reported for a square DF with ar ¼ 1 (Nezu and Nakagawa 1986,
1993). Recently, Demiral et al. (2020) and Kadia et al. (2022a)
found that the flow conditions in the bottom half of a channel flow
with ar ¼ 0.89 can be comparable to the bottom corner flows in a
square duct; i.e., the bottom half flow in Fig. 1(c) is comparable to
the flow in Fig. 1(b) since both flow conditions consist of a pair of
counterrotating vortices. However, there is still a lack of detailed
investigations describing the differences and similarities, if any, be-
tween OCFs and DFs for low aspect ratios, which motivates the
present study. In addition, 3D measurements of high-speed flows
in narrow channels are challenging, scarce, and demand advanced
nonintrusive measurement techniques (Kadia et al. 2022a), which
makes the numerical model a suitable alternative.

This study compares the mean velocity fields, secondary currents,
velocity dips, turbulence properties, and bed and wall shear stress
distributions observed for three narrow OCFs of high Reynolds
numbers Re with the corresponding DFs, which adds knowledge
to the existing design recommendations for tunnels and channels
conveying high-speed sediment laden flows. Six steady state sim-
ulations (see Table 1) were performed using the modified Launder,
Reece, and Rodi Reynolds stress model (Launder et al. 1975) or
LRR RSM implemented in OpenFOAM by Kadia et al. (2022a)
based on Naot and Rodi (1982), Cokljat (1993), and Cokljat and
Younis (1995). The OCF results for ar ¼ 1.25 are collected from
Kadia et al. (2022a), who previously compared the used model
results with the experimental data from Demiral et al. (2020) for

supercritical flows and obtained accurate computation of the bed
shear stress. Reynolds stress models are faster and computationally
more economical than transient options, detached-eddy simulation
(DES), LES, and direct numerical simulation (DNS) (whose appli-
cations are limited by Re and zþ1c ¼ U�lz1c=ν, where U�l = laterally
averaged bed shear velocity, z1c = vertical distance between the
bed and the adjacent cell center, and ν = kinematic viscosity
of the fluid), and can satisfactorily provide the desired Reynolds
stresses and secondary currents in fully developed flows with high
Re as obtained by Kadia et al. (2022a, c). Therefore, LRR RSM
was used in this study. The simulations have a constant bulk velocity
of 2.31 m=s and cover Re ¼ ŪDh=ν from 3.08 × 105 to 6.16 × 105

and ar of 1.0, 1.25, and 2.0 as provided in Table 1, where Dh =
hydraulic diameter. The studied OCFs with Fr ¼ Ū=

ffiffiffiffiffi
gh

p
between

1.65 and 2.33 and the respective ar values are comparable to sedi-
ment bypass tunnel flows [detailed in Kadia et al. (2022a, c)], which
are the focus of an ongoing research at NTNU.

Methodology

RSM Implementation

In the case of LRR RSM, the following transport equation is solved
to compute the Reynolds stress components (Alfonsi 2009; Hanjalić
and Launder 1972; Launder et al. 1975; Speziale et al. 1991; Wilcox
2006):

Du 0
iu

0
j

Dt
¼ ∂u 0

iu
0
j

∂t þUk

∂u 0
iu

0
j

∂xk ¼ −
�
u 0
iu

0
k

∂Uj

∂xk þ u 0
ju

0
k
∂Ui

∂xk
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Production Pij

− 2ν
∂u 0

i

∂xk
∂u 0

j

∂xk|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Dissipation εij

þp 0

ρ

�∂u 0
i

∂xj þ
∂u 0

j

∂xi
�

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Pressure-strain Φij

− ∂
∂xk

 
u 0
iu

0
ju

0
k þ

1

ρ
ðp 0u 0

iδjk þp 0u 0
jδikÞ− ν

∂u 0
iu

0
j

∂xk

!
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Diffusion

ð1Þ

where Ui = mean (time-averaged) velocity along the direction i;
u 0
i = fluctuation in velocityUi; p 0 = pressure fluctuation; ρ = density

of the fluid; δik = Kronecker’s delta; and u 0
i u

0
j = specific Reynolds

stress tensor Rij. Among the tensor terms, the most studied phe-
nomenon is the redistribution or the pressure-strain tensor Φij con-
sisting of slow Φij;s and rapid Φij;r pressure-strain parts and the
corrections due to boundaries. In the LRR model, Φij;s and Φij;r

are modeled as follows (Cokljat 1993; Cokljat and Younis 1995;

Table 1. Hydraulic parameters and grid arrangements for the simulated duct flows and open channel flows cases

Case name h (m) Ū (m=s) Fr Re (×105) ar ¼ b=h
Grida

(vertical × lateral)
Iterations to
converge

Simulation execution
time (min) zþ1c ¼ U�lz1c=ν

OCF_2 0.1 2.31 2.33 4.62 2.0 62 × 62 8,490 8.7 34.8
DF_2 — 3.08 134 × 134 8,575 31.0 36.7
OCF_1.25b 0.16 1.84 5.7 1.25 99 × 62 9,659 18.6 33.6
DF_1.25 — 4.11 214 × 134 12,264 80.4 35.4
OCF_1 0.2 1.65 6.16 1.0 123 × 62 9,714 22.6 33.2
DF_1 — 4.62 268 × 134 14,512 124.3 34.8

Note: for all cases, b ¼ 0.2 m, the flow regime is smooth, and the simulations were performed for one half of the channel or the duct.
aOne cell layer along the longitudinal direction.
bFrom Kadia et al. (2022a).

© ASCE 04024017-3 J. Hydraul. Eng.
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Kadia et al. 2022a; Launder et al. 1975; Reece 1977; Rodi 1993;
Rotta 1951; Wilcox 2006):

Φij;s ¼ −C1

ε
k

�
u 0
i u

0
j − 2

3
kδij

�
ð2Þ

Φij;r ¼ − 8þ C2

11

�
Pij − 2

3
Pkδij

�

− 8C2 − 2

11

�
Dij − 2

3
Pkδij

�
− 60C2 − 4

55
kSij ð3Þ

where Pij ¼ −½u 0
i u

0
kð∂Uj=∂xkÞ þ u 0

ju
0
kð∂Ui=∂xkÞ�, Dij ¼ −½u 0

i u
0
k

ð∂Uk=∂xjÞ þ u 0
ju

0
kð∂Uk=∂xiÞ�, turbulent kinetic energy (TKE)

k ¼ 0.5ðu 0
i u

0
i Þ, production of TKE Pk ¼ −u 0

i u
0
jð∂Ui=∂xjÞ ¼

0.5Pkk, mean strain-rate tensor Sij ¼ 0.5ð∂Ui=∂xj þ ∂Uj=∂xiÞ,
and coefficients C1 ¼ 1.5 and C2 ¼ 0.4 as utilized in previous
studies by Launder et al. (1975), Cokljat (1993), Cokljat and
Younis (1995), and Kadia et al. (2022a, c). At high Re values,
the “Kolmogorov hypothesis of local isotropy” suggests the dis-
sipation rate tensor εij ¼ ð2=3Þεδij, in which the scalar dissipation
rate of TKE ε is computed from the following transport equation
(Hanjalić and Launder 1972; Launder et al. 1975; Wilcox 2006):

∂ε
∂t þ Uj

∂ε
∂xj ¼ −Cε1

ε
k
u 0
i u

0
j
∂Ui

∂xj − Cε2
ε2

k
þ Cε

∂
∂xk

�
k
ε
u 0
ku

0
l
∂ε
∂xl
�
ð4Þ

whereCε ¼ 0.18,Cε1 ¼ 1.45, andCε2 ¼ 1.9 (Cokljat 1993; Cokljat
and Younis 1995; Gibson and Rodi 1989; Kadia et al. 2022a; Kang
and Choi 2006). The simple gradient-diffusion model proposed
by Daly and Harlow (1970) is used in OpenFOAM (OpenFOAM
Foundation 2022) to define the first term in the diffusion tensor.
The viscous diffusion term and the production tensor need no sep-
arate models (Alfonsi 2009; Kim 2001).

The solid boundaries and the free surface damp the normal
stress component perpendicular to themselves and redistribute the
same among the other directions. To account for that in the pressure
strain, the wall-reflection correction models proposed by Shir (1973)
and Gibson and Launder (1978) were used in combination with the

nonlinear wall and free surface damping functions proposed by Naot
and Rodi (1982) and then improved by Gibson and Rodi (1989),
Cokljat (1993), and Cokljat and Younis (1995). Kadia et al.
(2022a, b) previously incorporated the modifications required in
the existing LRR model in OpenFOAM and detailed the free sur-
face and wall corrections. Briefly, the corrections are functions of
Reynolds stress, turbulent kinetic energy, energy dissipation, unit
normal vector, turbulence length scale, near wall turbulence, and
the average distance from the boundary. The wall and free surface
corrections were combined considering that each boundary acts
separately and affects its normal stress component only.

Modeling in OpenFOAM and Boundary Conditions

The steady state uniform flow simulations were performed using
OpenFOAM: version dev (OpenFOAMFoundation 2022), full LRR
pressure-strain model, and simpleFoam solver, which attains the
velocity-pressure coupling using the SIMPLE algorithm proposed
by Caretto et al. (1973). Orthogonal hexahedra mesh configurations
were generated using the blockMeshDict dictionary. For DF simu-
lations, a uniform mesh of 0.75 mm cell size was used, which con-
forms to the log-law criteria at the first cell center (see Table 1). In
the case of the OCFs, the near wall cells were of size 0.75 mm (also
conforming to the log-law solution as found from Table 1) and in-
creased toward the free surface and the channel center up to≈3 mm
as detailed by Kadia et al. (2022a), who already performed a grid
convergence test. Figs. 2(a and b) compare the used grid arrange-
ments for ar ¼ 2 cases and explain the domain boundaries. Further-
more, Table 1 provides the grid arrangements used for the tested six
simulations. A total of 3,844–7,626 cells were generated for OCFs
and 17,956–35,912 cells were created for DFs. Along the flow di-
rection, one cell layer was required whose normal faces, i.e., the
inlet and outlet boundaries, were neighbourPatch to each other
and assigned cyclic or periodic boundary conditions to achieve
the steady state converged solutions. A momentum source was in-
troduced to all the cells using the fvOptions dictionary, which ad-
justs the velocity and the pressure gradient so that the volumetric
average velocity reaches the target (Ū, 0, 0) and produces a dynami-
cally adjusted longitudinal pressure gradient to drive the flow [see
Talebpour (2016), Talebpour and Liu (2019), and Kadia et al. (2021,
2022a, c) for further details].

(a) (b)

Fig. 2.Mesh arrangements for ar ¼ 2: (a) case OCF_2; and (b) case DF_2 (y ¼ −0.1 corresponds to the sidewall boundary, y ¼ 0 corresponds to the
symmetry plane boundary at the channel or duct mid width, and z ¼ 0 corresponds to the bed for both OCF and DF, whereas z ¼ 0.1 corresponds to
the free surface for OCF and the top wall boundary for DF).

© ASCE 04024017-4 J. Hydraul. Eng.
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The solid walls were no slip boundaries with fixedFlux-
ExtrapolatedPressure condition used for pressure p, kqRWall-
Function used for Rij, epsilonWallFunction used for ε, and
nutUWallFunction used for eddy viscosity νt (OpenFOAM
Foundation 2022). The local equilibrium condition near the wall,
i.e., Pk ¼ ε, is satisfied using such εwall function. Only one half of
the domain was simulated considering a symmetry plane condition
at channel or duct mid width (y ¼ 0) to minimize the computational
cost, and such an assumption did not influence the results. In OCF
simulations, a symmetry plane condition was applied at the free sur-
face for all variables except ε, for which the following condition pro-
posed by Naot and Rodi (1982) was implemented in OpenFOAM
using the codedFixedValue function (Kadia et al. 2022a):

εfs ¼
C3=4
μ

κ
k3=2fs

�
1

z 0
þ 1

z�

�
ð5Þ

where coefficient Cμ ¼ 0.09, von Kármán constant κ ¼ 0.41,

kfs ¼ 0.5ðu 0
i u

0
i Þfs, z 0 ¼ 0.07 h, and z� = average distance of a face

center from the nearest wall calculated following Naot and Rodi
(1982), Cokljat (1993), and Kadia et al. (2022a). See the source file
provided by Kadia et al. (2022a, b) for further details.

The convection term was discretized using second order schemes:
bounded Gauss limitedLinearV for Ui and bounded Gauss limited-
Linear for Rij and ε. A single gradient limiter is applied to all the
components while using the V scheme based on the most rapidly
changing gradient, and such a scheme helps to stabilize the sol-
ution (Almeland et al. 2021; Greenshields and Weller 2022).
Furthermore, the used cellLimited Gauss linear scheme for the
velocity gradient improved the near wall solutions. The used de-
fault fvSchemes are Gauss linear for the gradient, Gauss linear
orthogonal for the Laplacian term, and orthogonal for the surface-
normal gradient. The used matrix solvers are the preconditioned
(bi-)conjugate gradient (PBiCG) for Ui, Rij, and ε and the
geometric-algebraic multigrid (GAMG) for p. The converged OCF
solutions were obtained when the equation residuals for the var-
iables Ui, p, Rij, and ε reached ≤ 7.5 × 10−5 during the iterations.
In DFs, those were set at ≤ 5 × 10−5, which provided improved
bulging of the contour lines of the longitudinal velocity and
longitudinal turbulence intensity. A relaxation factor of 0.7 was
used for Ui, Rij, and ε, and the same was 0.3 for p, which were
suggested for the steady state simulations (Greenshields 2022;
Greenshields and Weller 2022) and were used previously by
Talebpour (2016) and Kadia et al. (2022a). To converge, the OCFs
required between 8,490 and 9,714 iterations and the DFs required
between 8,575 and 14,512 iterations, which were increased with
an increase in the flow depth and number of cells (see Table 1).
The simulations are computationally economical and took (only)
between 8.7 and 22.6 min and between 31.0 and 124.3 min to
achieve the converged solutions for OCFs and DFs, respectively
(see Table 1). The increase in the number of cells impacted the
simulation execution time, as expected. The resulting postprocess-
ing was performed using ParaView: version 5.9.1 and MATLAB:
version R2021a.

Results and Discussion

Mean Velocity Fields and Secondary Velocity Vectors

The longitudinal and lateral velocity distributions are symmetric,
and the vertical velocity distributions are antisymmetric about the
mid depth z=h ¼ 0.5 for DFs, and Umax values are located at
the center of the flow area [see Figs. 3, 4(a and b), and 5(a–c)].

However, the locations of Umax for OCFs shift toward the free sur-
face as the free slip top boundary condition and its damping and
redistribution effects differ from those imposed by a no slip wall
(Naot and Rodi 1982). At the mid width, such values are situated at
z=h ¼ 0.68, 0.61, and 0.625 for ar ¼ 2.0, 1.25, and 1.0, respec-
tively, which correspond well to the results obtained by Nezu and
Nakagawa (1993), Auel et al. (2014), and Demiral et al. (2020).
However, these locations of Umax are not a monotonically increas-
ing function of ar, possibly because of the developing or developed
intermediate vortices at lower ar. Guo (2014) proposed a model that
shows exponential shifting of the velocity-dip location from the
free surface to the mid depth with decreasing ar. However, the
model was validated in detail for ar ≥ 2.

DFs produce 1.0%–2.3% higher Umax values than OCFs (see
Table 2). These Umax values are 14.4%–14.9% higher than Ū for
OCFs and 15.5%–17.4% higher than Ū for DFs [see also Fig. 4(a)].
Such incremental values and the relative positions of the velocity-
dip can be useful to obtain approximate solution for Umax using the
discharge and h values only. Marginally higher maximum normal-
ized mean vertical velocity Wmax=Umax for DFs than for OCFs but
significantly lower maximum absolute normalized mean lateral
velocity jVmax=Umaxj and maximum normalized mean resultant
secondary velocity UWV;max=Umax (where the mean resultant

secondary velocity UWV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2 þ V2

p
) for DFs than for OCFs

(see Table 2) signify the stronger free surface vortices in OCFs than
weaker corner vortices in DFs. Interestingly, the deviations reduce
with a reduction of ar as the free surface influence reduces. At the
mid width, considerably higher deviations between the OCF and
DF profiles, especially in the outer flow region z=h > 0.2, are ob-
served for the vertical velocity as seen from Fig. 4(b). Broadly, the
secondary velocity values provided in Table 2 are comparable to
previous studies on OCFs (Albayrak and Lemmin 2011; Broglia
et al. 2003; Kadia et al. 2022a, c; Naot and Rodi 1982; Nezu and
Nakagawa 1986, 1993; Nezu and Rodi 1985; Tominaga et al. 1989)
and on DFs (Melling and Whitelaw 1976; Naot and Rodi 1982;
Nezu and Nakagawa 1993). However, Nikitin (2021) reported
higher UWV;max (up to 5% of Ū) in a DNS study conducted for
an OCF with ar ¼ 4.0.

The nearly symmetrical U=Umax contours observed about the
bottom corner bisectors for OCFs, especially for lower ar values,
are comparable to the DF results with same bottom corner condi-
tions [see Figs. 3(a–c)]. Additionally, U=Umax contour patterns in
the bottom half depth for OCFs match fairly with the same found
for DFs. In the case of DFs, the diagonal components of the corner
vortices push the high-momentum fluids and isovels of U=Umax
toward the corners, whereas the inward lateral components of
the sidewall corner vortices [up to y=h≈�0.8 for ar ¼ 2.0; y=h≈
�0.35 for ar ¼ 1.25, and y=h≈�0.13 for ar ¼ 1.0 as seen in
Figs. 5 and 6(a–c)] and the inward vertical flows of the bottom
and top wall corner vortices push the low-momentum fluids and
isovels of U=Umax toward the center of the flow area as found in
Figs. 3(a–c) [see also Figs. 3(d–f), 5, and 6(a–c)]. The inward lat-
eral components of the sidewall corner vortices are restricted up to
such y=h values (around which a zone of negligible secondary
velocity is formed surrounded by corner vortices) due to the out-
ward lateral components of the bottom and the top wall corner vor-
tices [see Figs. 6(a–c)], which dominate the sidewall corner vortices
for ar > 1.0. The restriction relaxes with a reduction of ar, which
enlarges the sidewall corner vortices in comparison to the bottom
and top wall corner vortices. Therefore, the inward bulging of the
isovels of U=Umax is more pronounced for DF_1 than the same
observed for higher ar of 1.25 and 2.0 as found in Figs. 3(a–c).
Interestingly, the zone of negligible secondary velocity is also found
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(a) (b)

Fig. 4. Comparison of the profiles obtained at the mid width y ¼ 0 for normalized mean: (a) longitudinal velocity U=Ū; and (b) vertical
velocity W=Ū.

Fig. 3. Comparison of the normalized mean longitudinal and vertical velocities—open channel flows (OCFs) versus duct flows (DFs): (a and d) for
ar ¼ 2; (b and e) for ar ¼ 1.25 [OCF_1.25 case from Kadia et al. (2022a)]; and (c and f) for ar ¼ 1.
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for OCF with ar ¼ 1.0 at z=h≈ 0.6 and y=h≈�0.24 as found in
Figs. 6(c–d). In OCFs, fully developed intermediate vortices are ob-
served for ar ¼ 1.0 [comparable to Broglia et al. (2003) and Kadia
et al. (2022a)], which are developing for ar ¼ 1.25 [see Fig. 6(b)]
and absent for ar ¼ 2.0 [see Fig. 6(a)]. The inward lateral compo-
nents of the developing or the developed intermediate vortices at
z=h around 0.5–0.6 [see Figs. 5(b–c)] push the low-momentum flu-
ids inward and result in bulging of the isovels ofU=Umax toward the
channel center. In both OCFs and DFs, the reduction of ar eases
the lateral transfer of low-momentum fluids toward the center of the
flow area and results in narrowing the area of higher velocity fluids
as found in Figs. 3(a–c). Although the bottom wall corner vortices
are prominent up to the mid width for DFs, the similar (i.e., the bot-
tom vortices in OCFs) could not reach the mid width for wider chan-
nels, especially for the OCF_2 case, as observed from Figs. 3(d–f)
and 6(a–c). As a result, the upward bulging of the isovels ofU=Umax
away from the bed for the OCF_1 and OCF_1.25 cases is similar
to that observed for the DF_1 and DF_1.25 cases, respectively, but
differs noticeably for ar ¼ 2.0 as observed from Figs. 3(a–c). In the
case of OCFs, the diagonal components of the bottom vortices and
free surface vortices (additionally intermediate vortex components
when they exist) toward the bottom corner bisectors bulge the isovels
of U=Umax toward the corners [see Figs. 3(a–c) and 6].

Unlike the lower half flow depth, significant differences be-
tween the OCF velocity fields and DF velocity fields are observed
in the upper half flow depth due to the differences in top boundary
conditions. The no slip top wall in DFs produces steeper velocity
gradients ∂U=∂z and enhanced velocity-dip phenomena compared
to those obtained in OCFs with free surface [see Figs. 3(a–c)
and 4(a)] although the OCFs produce stronger secondary velocities
than DFs as discussed earlier [relate Figs. 3(d–f), 4(b), 5(a–c),
and 6 and Table 2]. Unlike in DFs, where the flow conditions
are mirrored about the mid depth, in OCFs, the free surface vor-
tices spatially dominate the other vortices as shown in Figs. 6(a–c),
especially for higher ar values. The inward lateral components
near the free surface [see Figs. 5(a–c) and 6] and the downward
components near the channel center [see Figs. 3(d–f) and 6] of the
free surface vortices convey the low-momentum fluids toward the
mid width from the sidewalls, which bulges the isovels of U=Umax
toward the center of the flow area and results in velocity dips as
found in Figs. 3(a–c). For OCF_2, the outward lateral compo-
nents of the free surface vortices at z=h≈ 0.6 transfer the high-
momentum fluids toward the sidewalls and push the isovels of
U=Umax outward. Such transfer of fluids relaxes and even opposes
with the decrease in ar (and the development of intermediate vor-
tices) as found in Figs. 3(b and c). In addition, Fig. 6 shows that the

Fig. 5. Comparison of the normalized mean lateral and resultant secondary velocities—OCFs versus DFs: (a and d) for ar ¼ 2; (b and e) for
ar ¼ 1.25 [OCF_1.25 results from Kadia et al. (2022a)]; and (c and f) for ar ¼ 1.
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inner secondary vortices formed at the mixed corners in OCFs are
smaller than the free surface vortices [also reported previously by
Grega et al. (1995, 2002), Broglia et al. (2003), Kang and Choi
(2006), Nikitin (2021), and Kadia et al. (2022a, 2024)] and as
compared to the corner vortices in DFs. However, such small-scale
vortices could still alter the isovels of U=Umax at the top mixed
corners as seen in Figs. 3(a–c).

Mean Turbulence Characteristics and Mean
Longitudinal Vorticity

The longitudinal, vertical, and lateral turbulence intensities are
computed from the converged solutions of the specific Reynolds
(normal) stresses as urms ¼

ffiffiffiffiffiffiffiffi
Ruu

p
, wrms ¼

ffiffiffiffiffiffiffiffi
Rww

p
, and vrms ¼ffiffiffiffiffiffiffi

Rvv
p

, respectively [Figs. 7 and 8(a–c)]. The shear velocity values at
the bed and sidewall were obtained from the log-law (von Kármán
1930; Prandtl 1932) using an integral constant of 5.29 used previ-
ously by Nezu and Rodi (1986), Nezu and Nakagawa (1993), Auel
et al. (2014), and Demiral et al. (2020) and following Kadia et al.
(2022a). The bulging of urms=U�l contour lines is stronger than that
of U=Umax contour lines [comparing Figs. 3(a–c) with Figs. 7(a–c)],
which agree well with previous findings (Auel et al. 2014; Melling
andWhitelaw 1976; Nezu and Nakagawa 1993). However, the trends
are opposite; i.e., the higher urms=U�l values are found toward the no
slip boundaries where U=Umax reduces rapidly and produce steeper
velocity gradient in the normal direction while the lower urms=U�l
values are obtained toward the center of the flow area and around
the velocity dips where U=Umax reduces mildly and produces flatter
gradient. The diagonal flows (combining a pair of corner vortices for
DFs and combining bottom vortex, free surface vortex, and or inter-
mediate vortex for OCFs) toward the solid corners push urms=U�l
contour lines diagonally. Furthermore, the secondary flows around
the mid depth and mid width for the ar ¼ 1.25 and 1.0 cases bulge
the urms=U�l contour lines toward the center of the flow area. In the
case of OCF_2 and DF_2, urms=U�l contour lines are pushed away
from the solid boundaries around y=h≈�0.5 and y=h≈�0.4, re-
spectively, but not up to the mid width due to the restricted growth
of the bottom vortices. Additionally, the inner secondary vortices
modify urms=U�l contour lines at the mixed corners. Figs. 7(a and b)
and 9(a) indicate that urms=U�l contour lines in the central area below
the mid depth for ar ¼ 2.0 and 1.25 are more closely spaced for DFs
than those found for OCFs. This is apparently influenced by the
steeper ∂U=∂z found in such zones for DFs than those for OCFs
[see Figs. 3(a and b) and 4(a)]. Similar variations are also found
for wrms, vrms, and TKE k [see Figs. 7(d and e), 8(a and b), and
9(b–d)] for ar ¼ 2.0 and 1.25. Significantly higher deviations
(but similar trends) are observed in the central area above the
mid depth for urms, vrms, and k possibly due to the stronger bulging
ofU (steeper ∂U=∂z) found in such zone for DFs than the same for
OCFs. However, the distributions of wrms and primary specific
Reynolds shear stress −u 0w 0 diverge due to dissimilar top boun-
daries and their influences. In uniform OCFs, wrms reduces toward
the free surface and attains the minimum value near the free sur-
face (Auel et al. 2014; Komori et al. 1982; Nezu and Nakagawa
1986, 1993). Such observed trends are comparable to those re-
ported in uniform supercritical flows by Nezu and Nakagawa (1986,
1993), Auel et al. (2014), and Jing et al. (2019). However, the trends
can alter in nonuniform flows (Kironoto and Graf 1995; Song and
Chiew 2001), while further deviations are observed in decelerating
supercritical flows with higher Froude numbers (Demiral et al.
2020) experiencing surface perturbation and surface undulations
as reported by Auel et al. (2014) and discussed by Kadia et al.
(2022a), which apparently restrict the damping of wrms. In contrast,
wrms increases in the central area above the mid depth for DFs asT
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found in Figs. 7(d–f) and 9(b). However, wrms does not change sig-
nificantly very close to the bed and top wall due to its damping and
redistribution. Interestingly, the distributions of the gap between vrms
and wrms (represented by the turbulence anisotropy stress Raniso ¼
Rvv − Rww) observed in the central area for DFs differ insignificantly
from the same found for OCFs as seen from Figs. 8(d–f) and 9(f).
Besides, the patterns of wrms=U�l near the sidewalls for DFs are
comparable to those for OCFs, where the maximum wrms=U�l val-
ues [and the maximum negative turbulence anisotropy shown in
Figs. 8(d–f)] are observed for both flow types [Figs. 7(d–f)] due to
the comparable damping and redistribution of vrms toward the side-
walls [see Figs. 8(a–c)]. Similarly, the damping and redistribution of
wrms toward the bed and top wall or the free surface increases vrms
toward such boundaries [see Figs. 7(d–f), 8(a–c), and 9(b and c)]. As
a result, the maximum positive turbulence anisotropy values are ob-
tained near such boundaries [Figs. 8(d–f)]. Overall, the distributions
of urms=U�l, vrms=U�l, and Raniso in the bottom half depth of DFs are
comparable to the same observed in OCFs, especially for lower ar
values 1.25 and 1.0. In addition, the magnitudes of the turbulence
intensities presented in Fig. 9 indicate that the major contributor to
k is the longitudinal component, followed by lateral and vertical
components. However, the maximum urms=u�l and wrms=u�l val-
ues, where u�l = bed shear velocity at the mid width, obtained near
the bed are comparatively lower than the theoretical (Nezu and
Nakagawa 1993) and experimental (Auel et al. 2014; Demiral
et al. 2020) values, which is a limitation of the used RSM, as also
noticed by Cokljat (1993).

The primary specific Reynolds shear stress −u 0w 0 is obtained
from the converged solutions of the Reynolds shear stress compo-
nent Ruw. Figs. 9(e) and 10(a–c) indicate that−u 0w 0 extrema values
are attained close to the no slip walls for both OCFs and DFs, which
is attributed to the steeper gradient ∂U=∂z there. Although the dis-
tributions of −u 0w 0=U2

�l in the bottom half flow depth are mostly
comparable, significant differences are observed above the mid
depth. First, the weaker bulging ofU contour lines above the mixed
corner bisectors (i.e., weaker velocity dips and flatter ∂U=∂z) for
OCFs [see Figs. 3(a–c)] produces more distantly spaced contour
lines of negative −u 0w 0=U2

�l there than those obtained for DFs.

It further generates absolute minimum −u 0w 0=U2
�l values around

0.2 for OCFs, which are consistent with previous experimental data
(Nezu and Nakagawa 1993; Nezu and Rodi 1985) and numerical
results (Broglia et al. 2003; Kadia et al. 2022a, c; Kang and Choi
2006; Shi et al. 1999) but are significantly lower than DFs as seen
in Figs. 10(a–c). Second, with a decrease in ar, the intermediate
vortex develops and modifies U isovels, and thus, the contour line
of −u 0w 0=U2

�l around the channel quarters above the mid depth for
OCFs is pushed toward the free surface and follows the patterns as
in DFs. Such an interesting feature is clearly seen in Figs. 10(b–c)
at y=h≈−0.4 to −0.45 and z=h around 0.55 to 0.6 for OCF_1.25,
and more clearly for OCF_1 at y=h around −0.35 and z=h around
0.5 to 0.6 [comparable to the findings of Broglia et al. (2003)].
Lastly, the positive −u 0w 0=U2

�l values observed at z=h around 0.95

Fig. 6. Comparison of the simulated vector diagrams of the mean secondary velocity—OCFs versus DFs: (a) for ar ¼ 2; (b) for ar ¼ 1.25
[OCF_1.25 results from Kadia et al. (2022a)]; (c) for ar ¼ 1; and (d) developed intermediate vortex for OCF_1.
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for OCFs are attributed to the inward lateral components of the
small-scale inner secondary vortices, which create ∂U=∂z > 0 there
[see Figs. 3(a–c) and 10(a–c)].

The antisymmetric nature of the turbulence anisotropy stress
Raniso at the solid and mixed corners and its steeper gradients to-
ward the corners are the major contributors to the generation of
counterrotating secondary flows at the corners, which are reflected
from the vorticity equation provided by Einstein and Li (1958),
Demuren and Rodi (1984), Nezu and Nakagawa (1984, 1993),
Kang and Choi (2006), and Nikora and Roy (2012). Interestingly,
Raniso=U2

�l contour lines for DFs are comparable to those for OCFs
[Figs. 8(d–f)], especially for ar ¼ 1.25 and 1.0 and more specifi-
cally for the bottom half flow depth. The differences between the
free surface and solid top wall effects on the Reynolds stresses pro-
duce some dissimilarity in Raniso=U2

�l contour lines above the mid
depth as seen in Figs. 8(d–f). Such a difference can produce differ-
ent turbulence anisotropy gradients (toward the corners), which are
relevant to the vorticity production. Eventually, the secondary cur-
rent patterns for DFs obtained from the mean secondary velocity
vector plots (Fig. 6) and mean longitudinal vorticity ωx ¼ ∂V=∂z−
∂W=∂y contours [around the mid depth in Figs. 10(d–f)] differ

from those for OCFs. It is apparently impacted by the similar influ-
ences (on the damping and redistribution of the Reynolds stresses)
of the sidewalls and top and bottom walls in DFs, but dissimilar
influence of free surface and solid boundaries in OCFs. Further-
more, the spatial domination of the free surface vortices in OCFs
produces small-scale inner secondary vortices (smaller than the
sidewall corner vortices in DFs) and restricts the development of
intermediate vortices at higher ar [see Figs. 6 and 10(d–f)]. The
turbulence anisotropy distribution observed for OCF_2 [Fig. 8(d)]
agrees well with previous studies performed for similar ar (Cokljat
1993; Cokljat and Younis 1995; Shi et al. 1999). In addition, two
pairs of counterrotating corner vortices are found in one half of the
ducts [see Figs. 10(d–f)], which are antisymmetric about the mid
depth, as also visible from Figs. 6(a–c). The sidewall corner vor-
tices swell, and the top and bottom corner vortices shrink with a
reduction of ar. The vorticity plots indicate that the intermediate
vortex is a part of the free surface vortex that separates with a de-
crease in ar for OCFs. Although a fully developed intermediate
vortex is found for OCF_1, a part of the free surface vortex still
reaches the bottom solid corner before going up toward the free
surface while covering the intermediate vortex. In the lower flow

Fig. 7. Comparison of the normalized longitudinal and vertical turbulence intensities—OCFs versus DFs: (a and d) for ar ¼ 2; (b and e) for
ar ¼ 1.25 [OCF_1.25 results from Kadia et al. (2022a)]; and (c and f) for ar ¼ 1.
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region, the longitudinal vorticity distribution for OCF_1 is com-
parable to the same for DF_1.

Lateral Distribution of Bed Shear Stress and Vertical
Distribution of Wall Shear Stress

Computation of the cross-sectional distribution of the boundary
shear stress is crucial for better estimation of sediment transport
and safer design of channels from erosion and of SBTs from hydro-
abrasion, which can play a significant role in defining the capital
and maintenance costs of such designs. The difference in the sec-
ondary currents between OCFs and DFs and the influence of ar on
such flow structures impacts the boundary shear stress. The ob-
tained U�l, u�l, laterally averaged bed shear stress τ̄b, and depth
averaged wall shear stress τ̄w values for OCFs and DFs with a con-
stant bulk velocity are compared in Table 2. Interestingly, higher
U�l (between 4.9% and 5.5%), i.e., higher τ̄b (between 9.8% and
11.4%) values are found for DFs as compared to OCFs. The trend is
the same across the entire channel width as reflected from Fig. 11(a)
and is related to the higher near wall gradient ∂U=∂z observed for
DFs than OCFs as found at the mid width (as an example) from the

slopes of U=Ū profiles provided in Fig. 4(a). However, the incre-
ments of τ̄w (between 3.1% and 3.9%) are comparatively lower than
those observed for τ̄b. Interestingly, the increments of τ̄b and τ̄w
decrease marginally (for τ̄b, from being 11.4% for ar ¼ 2.0 to
9.8% for ar ¼ 1.0 and for τ̄w, from being 3.9% for ar ¼ 2.0 to 3.1%
for ar ¼ 1.0) with an increase in the flow depth or reduction of ar
(i.e., reduction of the free surface contribution as compared to the
flow depth). The decrease in ar reduces both τ̄b and τ̄w for OCFs as
well as for DFs. However, such reductions are greater for τ̄b than the
same for τ̄w. Additionally, the reduction of ar increases the deviation
between τ̄w and τ̄b for OCFs but decreases the same for DFs as
found in Table 2. Eventually, the quantities become equal for a
square duct, i.e., both being 8.63 N=m2 for the tested conditions.
Remarkably, such value is very close to the τ̄b (8.61 N=m2) and τ̄w
(8.71 N=m2) values obtained for OCF_2. The restricted lateral
growth of the bottom vortices undulates τb distributions for ar ¼
2.0 [see Figs. 3(d–f), 4(b), 6, and 11]. However, the distributions
become more regular for lower ar values 1.25 and 1.0 as the bottom
vortices reach the mid width. In all cases, the downflows of the bot-
tom vortices toward the sidewall push the isovels of U toward the

Fig. 8. Comparison of the normalized lateral turbulence intensity and the normalized turbulence anisotropy stress—OCFs versus DFs: (a and d) for
ar ¼ 2; (b and e) for ar ¼ 1.25 [OCF_1.25 results from Kadia et al. (2022a)]; and (c and f) for ar ¼ 1.
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bed and increase τb, whereas the upward flows toward the mid width
for ar 1.25 and 1.0 and around the channel quarter for ar ¼ 2.0
bulge the isovels of U away from the bed, which reduces τb. Addi-
tionally, the bed shear increases toward the mid width for ar ¼ 2.0.
The obtained τb=τ̄b undulations for OCF_2 and DF_1 are compa-
rable to the results reported previously by Nezu and Rodi (1985) and
Nezu and Nakagawa (1986, 1993) for similar ar values. However,
those studies compared the OCF results obtained for ar ≈ 2.0 with
the DF results obtained for ar ¼ 1.0 (although their consideration of
h = half flow depth, using horizontal symmetry plane, for DF makes
b=h ¼ 2.0) and observed a significant difference between the τb=τ̄b
profiles as also found in Fig. 11. Such a difference is attributed to the

development of bottom vortices whose lateral extends reach up to
the mid width for DF_1 but are limited up to the channel quarter
for OCF_2 (see Fig. 6). Therefore, the bed shear stress distribution
of a square duct cannot be compared to that of an OCF with ar ¼ 2.0
even though τ̄b values are close (see Table 2). For ar ¼ 1.25 and 1.0,
the lateral distributions of τb=τ̄b for OCFs differ insignificantly from
those obtained for DFs as seen in Fig. 11(b).

The normalized wall shear stress τw=τ̄w increases up to z=h≈
0.2–0.25 but decreases above such z=h and up to the mid depth for
DFs (see Fig. 12) due to the outward and inward components of
the sidewall corner vortices, respectively, which alter U isovels
and near wall gradient ∂U=∂y. In contrast, τw=τ̄w increases around

(a) (b)

(c) (d)

(e) (f)

Fig. 9. Comparison of the profiles obtained at the mid width y ¼ 0 for normalized (a) longitudinal turbulence intensity; (b) vertical turbulence
intensity; (c) lateral turbulence intensity; (d) turbulent kinetic energy; (e) primary specific Reynolds shear stress; and (f) turbulence anisotropy stress.
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the mid depth for OCF_2 as the outward flow of the free surface
vortices push U contour lines toward the sidewall. Such incre-
ments relax and τw=τ̄w values remain roughly constant with the
developing (for OCF_1.25) and developed (for OCF_1) intermedi-
ate vortices, which push the low-momentum fluids toward the mid
width (see Figs. 6 and 12). In addition, the rapid rise in τw toward
the free surface is attributed to the outward bulging of U contour
lines due to the small-scale inner secondary vortices. Similarly, the
inward bulging of U contour lines due to such vortices around
z=h≈ 0.8–0.9 reduces the near wall ∂U=∂y and eventually the
wall shear. Such influence of the inner secondary vortices was re-
ported previously by Kang and Choi (2006) for a subcritical flow
with ar ¼ 2. However, the Speziale et al. (1991) or SSG RSM used
by Kang and Choi (2006) simulated weaker bulging of the U con-
tour lines toward the bottom solid corner and, thus, observed lower
τw=τ̄w near the bed as seen in Fig. 12. It is challenging to exper-
imentally determine the impact of inner secondary vortices because
of the difficulties in measuring the velocity data close to the boun-
daries at the mixed corner. Therefore, Nezu and Rodi (1985) could

not provide the near free surface undulation of τw=τ̄w. The vertical
distribution of τw=τ̄w can be useful in the design of sidewall or bank
erosion protections.

Potential Scale Effect and Upscaling of the Results

The simulated OCF conditions are comparable to the recent exper-
imental studies on high-speed flows, e.g., Auel et al. (2014, 2017a, b)
and Demiral et al. (2020, 2022), and the studied Re and h values
(see Table 1) satisfy the recommended minimum values of 105 (Boes
and Hager 2003) and 0.04 m (Heller 2011), respectively, to limit the
scale effects in high-speed flows. Therefore, the results can be
scaled up for geometric, kinematic, and dynamic similarities to
compare the prototype designs using Froude similitude [see Heller
(2011) and Pummer and Schüttrumpf (2018)]. For example, the
scale factor for Solis SBT = existing channel width divided by
model width ¼ 4.4=0.2 ¼ 22. Furthermore, Demiral-Yüzügüllü
(2021) compared the hydro-abrasion results from the scaled flow,
sediment, and invert material conditions with the field observations

Fig. 10. Comparison of the normalized mean primary specific Reynolds shear stress and mean longitudinal vorticity—OCFs versus DFs: (a and d) for
ar ¼ 2; (b and e) for ar ¼ 1.25 [OCF_1.25 results from Kadia et al. (2022a)]; and (c and f) for ar ¼ 1.
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and observed no or negligible scale effects. In addition, the tested
DFs have significantly higher Re than fully turbulent DF cases
tested by Pirozzoli et al. (2018) and Nikitin (2021) using DNS,
where it was found that the development of the corner vortices
and their effect on the flow properties depended on Re when it
was comparatively low. The results obtained for the DFs can be

scaled up using the geometric scale and Euler number similarity
(Aberle et al. 2020). However, further research at project scale shall
enlighten the existing knowledge.

Conclusions

The present numerical study compares the mean velocity fields,
secondary currents, velocity dips, turbulence properties, and bed
and wall shear stress distributions in three supercritical narrow open
channel flows (OCFs) of aspect ratios ar ¼ 1.0, 1.25, and 2.0, com-
parable to sediment bypass tunnel flow conditions, with those in
three duct flows (DFs). Steady state uniform flow simulations were
performed in OpenFOAM using a modified Launder, Reece, and
Rodi Reynolds stress model, which was validated previously for
supercritical flows by Kadia et al. (2022a). The used numerical ap-
proach is fast and computationally more economical than transient
options but limits to uniform flow conditions. Overall, the three-
dimensional turbulent flow characteristics of narrow OCFs differ
from the same found in narrow square or rectangular DFs, espe-
cially above the mid depth, due to the difference between the free
surface and top wall boundaries, whose damping and redistribution
effects on the turbulence intensities are dissimilar. The major con-
clusions drawn from the comparison between OCFs and DFs are as
follows:
• Top no slip wall in DFs produces steeper velocity gradient ∂U=∂z

and enhanced velocity-dip phenomenon compared to those in
OCFs even though the free surface in OCFs generates maximum
secondary velocity values that are greater than those are in DFs.

• Unlike DFs, in which the turbulence intensity components, tur-
bulent kinetic energy, and turbulence anisotropy stress all in-
crease sharply in the central flow area above the mid depth due
to the solid top wall, the free surface in OCFs produces compa-
ratively lesser increments in the longitudinal and lateral turbulence
intensities and turbulent kinetic energy above the velocity dips,
and even sharp reduction in the vertical turbulence intensity there.
However, the difference in the turbulence anisotropy stress is less
significant. The observed damping of the vertical turbulence in-
tensity toward the free surface agrees well with the uniform super-
critical flow experiments reported in the literature.

• In DFs, two antisymmetric pairs of counterrotating vortices are
observed in each half width, and a reduction of ar enlarges the
sidewall adjacent corner vortices in comparison with the re-
maining ones. Although decreasing ar for OCFs swells the bot-
tom vortices, narrows and deepens the free surface vortices, and
develops the intermediate vortices, it imposes an insignificant
impact on the inner secondary vortices. These alternations of
secondary currents are interrelated to the redistributions of lon-
gitudinal velocity and turbulence parameters among the flow
zones toward the corners, boundaries, and central area. Interest-
ingly, the intermediate vortices in the square channel impose
similar effects on the flow properties such as the sidewall corner
vortices in DFs.

• DFs produce higher τ̄b and τ̄w as compared to OCFs. However,
the percentage increase of τ̄b is greater than that of τ̄w. These
percentage values are impacted insignificantly by ar because the
increasing ar produces greater raise of τ̄b for both OCFs and
DFs than the respective raise of τ̄w. The bottom vortices un-
dulate the bed shear stress distributions whereas the sidewall
corner vortices (in DFs) or the intermediate vortices and inner
secondary vortices (in OCFs) undulate the wall shear stress dis-
tributions, which are influenced by ar. These observations are of
utmost importance for the hydraulic design of tunnels and bed

(a)

(b)

Fig. 11. Lateral variation in the bed shear stress—OCFs versus DFs:
(a) absolute bed shear stress; and (b) normalized bed shear stress
(y values in DFs are multiplied by −1 to compare with OCFs).

Fig. 12. Vertical variation in the normalized wall shear stress—OCFs
versus DFs.
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rock channels regarding sediment transport and hydro-abrasion
processes, i.e., patterns and depths.

• The flow characteristics in the bottom half depth of OCFs are
comparable with those of DFs, especially for the square cross
sections with ar ¼ 1.0.

• The turbulent flow characteristics in a square duct are not com-
parable with those in an OCF with ar ¼ 2.0.

• Overall, the used model is suitable to compute the turbulent flow
characteristics and boundary shear stress in high-speed uniform
and quasi-uniform narrow OCFs (when the free surface undu-
lations are limited) and narrow DFs.
The present findings provide a comprehensive characterization

of narrow OCFs and DFs useful in designing the channels and tun-
nels conveying high-speed sediment laden flows and will underpin
follow up studies. In particular, the separation of intermediate
vortex from the free surface vortex for narrower OCFs demands
further numerical (LES and DNS) and experimental investigations.
Furthermore, the model can be scaled up for project flow conditions
based on the Froude similitude since no scale effect is expected
for the tested h and high Re. Lastly, the updated LRR RSM in
OpenFOAM can further be modified by the users for 3D grid
arrangements, irregular cross sections, and parallel processing.

Data Availability Statement

The obtained results are available from the corresponding author
upon reasonable request. The supporting modified OpenFOAM
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Acknowledgments

This study is funded by NTNU (project number 81772024) and
supported by HydroCen (project number 90148311).

Notation

The following symbols are used in this paper:
ar ¼ b=h = aspect ratio;

b = width of open channel or duct (m);
Dh = hydraulic diameter (m);
Fr = Froude number;
h = flow depth (m);
k = turbulent kinetic energy (m2=s2);

Pk = production of turbulent kinetic energy
(m2=s3);

p = pressure (N=m2 in general, but m2=s2 in
simpleFoam);

Re = Reynolds number;
Raniso ¼ Rvv −Rww = turbulence anisotropy stress (m2=s2);

Rij = specific Reynolds stress tensor (m2=s2);
U, V, and W = mean longitudinal, lateral, and vertical

velocities (m=s);
UWV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2 þV2

p
= mean resultant secondary velocity (m=s);

Ū = bulk velocity (m=s);
U�l = laterally averaged bed shear velocity (m=s);

urms, vrms, and wrms = longitudinal, lateral, and vertical turbulence
intensities (m=s);

u 0, v 0, and w 0 = longitudinal, lateral, and vertical velocity
fluctuations (m=s);

u�l = bed shear velocity at the mid width (m=s);

−u 0w 0 = primary specific Reynolds shear stress
(m2=s2);

y = lateral distance from the mid width (m);
z = vertical distance from the bed (m);
ε = dissipation rate of turbulent kinetic energy

(m2=s3);
ν and νt = kinematic viscosity and eddy-viscosity

(m2=s);
τb and τ̄b = bed shear stress and laterally averaged bed

shear stress (N=m2);
τw and τ̄w = wall shear stress and depth averaged wall

shear stress (N=m2);
Φij = pressure-strain tensor (m2=s3); and
ωx =mean longitudinal vorticity (=s).
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