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Abstract: A new, three-parameter friction model at the boundaries of free surface flow is proposed. The model is valid for all flow and
roughness characteristics and it is proposed to replace the widely used Manning equation in the flood simulation models. In the gauged flow
domains, the parameters of the model can be calibrated directly using the appropriate field data. For the ungauged flow domains, the param-
eters are estimated following a four-step procedure: (1) selection of roughness zones; (2) generation of synthetic data from water depth—flow
velocity—roughness height combinations; (3) calculation of shear stresses using a physically based equation; and (4) estimation of the model
parameters through regression toward the results of this equation. The proposed friction model is used in the case study of the Tous dam break
in Spain in 1982, as it was simulated by the two-dimensional hydrodynamic model FLOW-R2D. The results of this application show that the
proposed friction model performs slightly better than the commonly used Manning equation. DOI: 10.1061/(ASCE)HY.1943-
7900.0001540. This work is made available under the terms of the Creative Commons Attribution 4.0 International license, http://
creativecommons.org/licenses/by/4.0/.

Introduction

The shear stress created in a fluid body during its motion along
a solid boundary, known also as friction, is a very important factor
in the simulation of flood events. It may be the primary source of
uncertainty in the results of flood simulation. This is even more
profound in flood flows occurring in mild terrains, in which other
parameters such as topography play a minor role.

So far, various friction models have been proposed and used
in practical applications, which have been derived from the theory
of fluid mechanics (e.g., Bates et al. 2005; Cheng 2008; López et al.
2009; Nepf 2012; Özgen et al. 2015). However, so far, this theo-
retical knowledge has not yet been exploited for improving hydro-
dynamic modeling. The majority of the numerical flood simulation
models [one-dimensional (1D) or two-dimensional (2D)] adopt
semi-empirical equations derived in the 19th century, such as the
Manning equation. As known, the Manning equation needs only
one friction factor, which can be estimated easily from the litera-
ture, practically for any terrain.

Obviously, the Manning equation is understood as a gross
procedure, since its friction coefficient is assumed to be constant,
regardless of both water depth and flow velocity. This fact has been
questioned recently (Ferguson 2010). Besides, many modelers
attempt to calibrate friction coefficients based on historical data
flood events or from field data (Papanicolaou et al. 2011). Yet, the
optimized Manning friction coefficient values are usually greater
than those encountered in the literature, because they incorporate
turbulence energy losses (Jarrett 1985; Christelis et al. 2016). This
is because the flow during flood events is so violent in comparison
with the physical models that the energy losses from turbulence
are reflected in the increased friction coefficients (Morvan et al.
2008).

This fact led us to consider friction coefficients as grey-box
parameters, which means that the values found in the scientific
literature are not adopted as globally valid, but they cannot be
considered as black-box parameters either (Kroll 2000).

By adopting this nature of friction parameters, a new, three-
parameter friction model is presented, in which the shear stresses
are assumed proportional to a power of flow velocity and reciprocal
to a power of water depth.

For convenience in the analysis, the flow domains in two
categories are distinguished: (1) the gauged flow domains in which
all necessary data exist, so that the calibration process can be
performed; and (2) the ungauged flow domains, in which data
are not available. The term flow domain means the natural free-
surface flow in several cases, such as flow in fluvial scale, flood-
plains, urban environments, etc.

For the first category, the process for defining the friction
parameters is rather simple and involves two steps: (1) development
of an objective function for the comparison between observed
and simulated data (on the basis of the available data, such as
observed maximum water depth, flow rate measurements, etc.); and
(2) calibration of friction parameters through optimization of this
objective function.

For the second category, we transfer the scientific knowledge on
bottom shear stress from the microscale of fluid mechanics, to the
scales used in the hydrodynamic modeling.

In this context, a new explicit equation for the friction factor
f of the Darcy-Weisbach equation is derived to represent the bottom
shear stresses in a more detailed fashion. Further, the ungauged flow
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domains are classified with respect to the roughness, and the three
parameters for each roughness class are estimated.

Three-Parameter Friction Model

Using the principle of momentum conservation and assuming a 2D
approach (in which the hydraulic radius is equal to water depth),
Eq. (1) can be written for the shear stresses at the bottom τb as
follows:

τb
ρ

¼ ghSf ð1Þ

where ρ = the density of the fluid; h = the water depth; and Sf = the
energy slope.

By replacing Sf from the Manning equation, Eq. (1) becomes:

τb
ρ

¼ gn2V2

h1=3
ð2Þ

where n = the Manning coefficient; and V = the flow velocity.
To transform the Eq. (2) for 1D analysis, the water depth should

be replaced by the hydraulic radius R. Eq. (2) represents the most
common approach adopted in the majority of the hydrodynamic
software packages.

As mentioned, a new, three-parameter friction model is pro-
posed in which shear stresses are proportional to a power of flow
velocity and reciprocal to a power of water depth, as follows:

τb
ρ

¼ VA

BhC
ð3Þ

where A, B, C are the three parameters of the new friction model.
By analyzing Eq. (3) in the following way:

log10

�
τb
ρ

�
¼ αlog10ðhcVdÞ þ b ¼ log10ð10bhαcVαdÞ ⇒ τb

ρ

¼ 10bhαcVαd ð4Þ

Parameters A, B, C can be estimated as follows:

A ¼ ad; B ¼ 1

10b
; C ¼ −ac ð5Þ

For A ¼ 2, C ¼ 1=3, and B ¼ 1=gn2, Eq. (3) becomes identical
to Eq. (2), which is based on the Manning equation. Therefore,
it can be concluded that Eq. (2) is a special case of the proposed
general friction model, which incorporates three parameters instead
of one.

Analysis of a Gauged Flow Domain Case Study

In the gauged flow domains, the friction parameters are implicitly
calibrated (since shear stresses cannot be directly measured), by
adopting physical constraints based on prior scientific knowledge.
For illustrative purposes, a case study is presented as an application
example for the friction model implementation. The example refers
to the flood wave caused by the dam break of the Tous dam in Spain
in 1982, as it was reconstructed by Alcrudo and Mulet (2007).

This case study is a well-known benchmark test for flood
simulation models and has been used in previous works, mainly
related to the application and testing of the 2D hydrodynamic
model FLOW-R2D (Tsakiris and Bellos 2014; Bellos and Tsakiris
2015b, a, 2016). This model solves the 2D shallow water equations

(2D–SWE) through the finite difference method using a modified
version of the McCormack numerical scheme.

In the past, an effort was made using surrogate modeling for the
calibration of the Manning n value for the entire computational do-
main and the effective slope (Seff) used in the upstream boundary
condition (Christelis et al. 2016).

In this effort, the objective function was the sum of the squared
errors (SE) between the observed and simulated water depths at
the 21 water depth gauges in Sumacárcel, located a close distance
downstream of the dam. The results derived from this optimization
procedure for the SE value was 37.889 m2 and the calibrated quan-
tities were n ¼ 0.194 s=m1=3 and Seff ¼ 0.019.

In the present study, the same surrogate model is implemented,
but instead of the Manning equation, the proposed friction model is
used. In this case, the same optimization procedure leads to a
slightly lower value of SE (37.151 m2), whereas the calibrated
parameters are A ¼ 2.596; B ¼ 10.0; C ¼ 0.1; and Seff ¼ 0.018.

Admittedly, the decrease of SE is relatively small (approximately
2%), but probably because of the limited computational budget
(100 simulations), and the fact that only two parameters are cali-
brated for the Manning equation, whereas four parameters are deter-
mined for the proposed friction model. Needless to say, the proposed
method needs to be tested further, in several applications.

Regarding this application, Fig. 1 presents the water depths and
flow velocities derived by the FLOW-R2D model combined with
the proposed friction model. In Fig. 2, the observed maximum
water depths of the proposed friction model are compared with
those derived by the same hydrodynamic model using the Manning
equation.

Analysis for Ungauged Flow Domains

General

The case of ungauged flow domains is the most common one, since
there are very few case studies with observed data and even fewer
studies with continuous monitoring. Hence, the only possible pro-
cedure for acquiring a rational friction model is to take advantage of
the theory in parallel with the collection of data of the flow domain
characteristics (e.g., granulometry, vegetation, buildings, etc.) us-
ing advanced techniques such as photointerpretation.

An application example of the proposed friction model in
ungauged flow domains follows. It involves the classification of
several flow domains and estimation of the three parameters A,
B, C, through a new equation for the calculation of the Darcy-
Weisbach friction factor f. The equation is physically based,
explicit, and unconditionally valid for both flow regimes (laminar
and turbulent). The qualifier physically based means that this
developed equation depends on both the flow characteristics (water
depth, flow velocity, and kinematic viscosity) and the flow do-
main characteristics that can be measured (e.g., roughness height).
Therefore, the new equation is quite suitable for modeling, espe-
cially in cases in which the roughness height can be estimated with
reasonable accuracy.

For the ungauged flow domains, the theory was exploited from
the microscale of fluid mechanics to reach scales used in the hydro-
dynamic models, using two steps.

In the first step, a new explicit equation for the Darcy-Weisbach
friction factor f equation is derived to represent the bottom shear
stresses. This equation is valid for all flow conditions (laminar and
turbulent) and appropriate for free-surface flow. The flow character-
istics and the roughness height are the input data for the proposed
equation, which is obtained combining elements from the boundary
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layer theory for a solid boundary and the well-known experimental
data published by Nikuradse (1933).

The second step deals with the classification of the ungauged
flow domains with respect to roughness and the estimation of
model parameters. This step incorporates the following actions:
(1) roughness height range for several domains is estimated based
on the related literature; (2) random combinations of water depth,
flow velocity, and roughness height are generated using the Monte
Carlo simulation based on the uniform probability distribution with
preassigned ranges of involved variables; (3) based on the afore-
mentioned synthetic data, shear stresses are determined using
the new, analytical relationship derived in the first step; and
(4) the three parameters are determined based on the best fit of
the synthetic data toward the results derived using the analytical
relationship.

New Friction Equation for Free Surface Flow

The new explicit equation is presented here for estimating Darcy-
Weisbach friction factor f in free-surface flows, valid under all flow

regimes (from laminar to turbulent flow), and which depends on
flow characteristics (water depth and flow velocity) and roughness
height. The analytical process in which this equation is derived is
described in the Appendix and is based on Cheng’s idea (Cheng
2008). Based on this process, friction factor f can be calculated
as follows:

f ¼
�

24

Reh

�
α
�
0.86eWð1.35RhÞ

Rh

�
2ð1−αÞb( 1.34�

ln
�
12.21 h

ks

�	
2

)ð1−αÞð1−bÞ

ð6Þ

where

α ¼ 1

1þ �Rh
678

�
8.4

ð7Þ

b ¼ 1

1þ



Rh

150 h
ks

�
1.8 ð8Þ

Wð1.35RhÞ ¼ lnð1.35RhÞ − ln½lnð1.35RhÞ� þ
ln½lnð1.35RhÞ�
lnð1.35RhÞ

þ ln½lnð1.35RhÞ�2 − 2 ln½lnð1.35RhÞ�
2½lnð1.35RhÞ�2

ð9Þ

and Rh = the Reynolds number assuming that the characteristic
length of the flow is the water depth h; while ks = the roughness
height.

Having obtained f from Eq. (6), the bottom shear stresses can be
calculated easily using the Darcy-Weisbach equation, combined
with Eq. (1) as follows:

τb
ρ

¼ f
8
V2 ð10Þ

Classification of Flow Domains

As mentioned, the classification of flow domains based on the level
of roughness consists of the following steps:

Fig. 1. (a) Water depths; and (b) flow velocities simulated using the proposed friction model.

Fig. 2. Comparison between the maximum water depths recorded, the
maximum water depths simulated by the Manning equation, and the
maximum water depths obtained using the proposed friction model,
at the 21 water level gauges in the floodplain downstream the Tous dam.
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1. Based on literature, various roughness zones in the form of
intervals for roughness height are produced for each one of the
examined materials; an example of this classification is pre-
sented in Table 1. It is noted that vegetation or buildings are not
considered in the analysis.

2. A synthetic data set is generated for each class of roughness
height using the Monte Carlo simulation: 100,000 combinations
of water depth, flow velocity, and roughness height are ran-
domly generated from a uniform probability distribution, using
prespecified intervals for water depth and flow velocity. These
are selected to cover the possible range of the two variables in
real applications. Specifically, for water depth, the interval is
0.02–20 m while the corresponding range for flow velocity is
0.02–10 m=s. The kinematic viscosity is assumed to be constant
and equal to 10−6 m2=s. The range for roughness height is
determined from the previous step in each zone.

3. Shear stresses are determined using Eq. (10), calculating the
friction factor f with the Eq. (6).

4. The three parameters are determined based on the best fit
between the results obtained from Eq. (10) [the friction factor
f being calculated from the Eq. (6)] and the results of the pro-
posed friction model [Eq. (3)]. The fit is achieved using the well-
known generalized reduced gradient or GRG solving method
(Lasdon et al. 1978), through the maximization of the Nash-
Sutcliffe efficiency coefficient (NSE). The optimal values of
the three parameters and the NSE metric, obtained for each
roughness zone, are presented in Table 1. Apart from the three
parameters, the Manning n value is calculated following the
same process as previously mentioned (Table 1). In Fig. 3,
the results from the fitting of the three parameters, for various
zones, are presented.
The aforementioned classification can also be used for checking

the plausibility of the calibrated friction parameters in cases of
gauged flow domains. Since friction parameters are grey-box, the
calibrated values can be tested as to whether they take realistic
values or not.

Finally, the issue of uncertainty of friction model parameters is
crucial when comparing models, since interval estimates of param-
eters normally lead to safer conclusions than point estimates do.
However, in this work, our analysis is limited to point estimates
because of the computational budget limitations, for both Manning
and the proposed friction model. Needless to say, approaches that
are less demanding in computing time can afford the assessment of

uncertainty of model parameters (Nalbantis and Lymperopoylos
2012; Nalbantis et al. 2017).

Discussion

Why Is It Necessary for the New Equation to be Valid
under All Flow Regimes?
In this section, an example is provided to show the advantage of an
equation valid under all flow regimes, against the use of one of
the several equations for calculating the Darcy-Weisbach friction
factor. The majority of the proposed relationships cover a part
of flow regimes, such as the well-known Colebrook-White equation
(Colebrook 1939), which is known to be valid only for turbulent
flow (i.e., with RD greater than 4,300).

The following simple numerical example can reveal the prob-
lems created when explicit relationships developed for a specific
flow regime are applied in other regimes. See, for example, the
Swamee and Jain equation (Swamee and Jain 1976), in relation
to flow with low Reynolds numbers:

f ¼ 0.25n
log

h
5.74

ð4RhÞ0.9 þ
ks=4h
3.7

io
2

ð11Þ

If ks ¼ 0.05 m, vs ¼ 10−6 m2=s, and V ¼ 0.02 m=s, the fric-
tion factor plotted versus Rh for both approaches (the proposed
equation and the Swamee and Jain equation) appears in Fig. 4. In
cases of low Reynolds number and water depths smaller than the
roughness height, the friction factor calculated by the Swamee and
Jain equation takes unrealistic values.

Although low Reynolds numbers are not common in practice,
and water depths are usually greater than the roughness height,
during the numerical simulation of a flood wave, there might be
cells or elements in which flow conditions are characterized by the
aforementioned conditions. Examples of such situations can be
encountered in cases in which water has been trapped in a blind
spot of the topography and remains semi-still.

Is a Homogeneous Domain Really Homogeneous?
Another important issue is the test of homogeneity with respect to
the friction characteristics of an area. Again, a simple example is
used here to show that even for relatively homogeneous materials,
the range of roughness height affects the computational results.

Table 1. Parameters A, B, and C of the proposed friction model and Manning n values for various flow domains

Zone
Roughness
height (mm) Reference

Parameters of the proposed
friction model

NSE
Manning

coefficient n NSEA B C

Silt 0.0039–0.0625 Krumbein and Aberdeen (1937) 3.355 58,328.9 0.169 0.54 0.0061 0.45
Concrete 0.3–3 Chanson (2004) 2.001 475.9 0.220 0.97 0.0156 0.91
Untreated shot concrete 3–10 Chanson (2004) 1.995 318.8 0.264 0.98 0.0184 0.96
Rubble masonry 5–10 Chanson (2004) 1.994 304.3 0.269 0.99 0.0187 0.97
Asphalt 1–1.5 ELOT (2009) 2.007 496.6 0.211 1.00 0.0153 0.92
Fine sand 0.0625–0.5 Krumbein and Aberdeen (1937) 2.155 1,004.9 0.184 0.95 0.0128 0.84
Coarse sand 0.5–2 Krumbein and Aberdeen (1937) 2.016 507.4 0.214 0.99 0.0152 0.91
Sand 0.0625–2 Krumbein and Aberdeen (1937) 2.041 579.7 0.206 0.95 0.0147 0.87
Fine gravel 2–16 Krumbein and Aberdeen (1937) 2.000 292.7 0.286 0.95 0.0190 0.94
Medium coarse gravel 16–32 Krumbein and Aberdeen (1937) 2.007 209.5 0.347 0.97 0.0221 0.97
Very coarse gravel 32–64 Krumbein and Aberdeen (1937) 1.997 152.4 0.431 0.93 0.0251 0.88
Coarse gravel 16–64 Krumbein and Aberdeen (1937) 2.057 187.9 0.410 0.91 0.0242 0.88
Gravel 2–64 Krumbein and Aberdeen (1937) 1.980 180.2 0.377 0.86 0.0230 0.85
Cobble 64–256 Krumbein and Aberdeen (1937) 1.834 17,580.2 2.655 0.50 0.0376 0.09

© ASCE 04018073-4 J. Hydraul. Eng.
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Fig. 3. Comparison of shear stresses calculated via the proposed friction model and the new friction equation for various flow
domains.
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Coupling Eqs. (1) and (3), the steady flow rate Q in a channel
can be calculated as follows:

Q ¼ AwðgBRCþ1S0Þ1A ð12Þ

where Aw = the wetted area of the cross section; and S0 = the
constant slope of the channel.

In Fig. 5, flow rate vs. water depth relationships are compared
(known as the stage-discharge curves) for the steady flow obtained
through Eq. (12) and the Manning equation, for a rectangular
channel 20 m wide with a constant slope 1‰. The channel is made
of concrete; therefore, a typical value for the Manning roughness
coefficient is used (n ¼ 0.013 s=m1=3; Chaudhry 2008). The values
for the three parameters A, B, C are taken from Table 1. It can be
observed that there are significant deviations between the two
curves, especially for higher value flow rates. Therefore, it is con-
cluded that the assumption of roughness homogeneity and the se-
lection of a unique value for Manning coefficient in a flow domain
needs careful consideration.

Concluding Remarks

The objective of this study was to develop a new friction model,
suitable for incorporation into 2D numerical flood simulation

models. In this context, the following concluding remarks can
be drawn:

The friction parameters incorporated in flood simulation models
can be considered as grey-box parameters, which can be calibrated
if data are available. The proposed three-parameter friction model
proved to perform better than the Manning equation using data
from a real flood event. However, additional systematic efforts
should be undertaken covering tests in a wide range of domain
types before this conclusion is generally accepted.

For the ungauged flow domains, an attempt was made to trans-
fer the knowledge on shear stress from fine scales to large scales
used in practical applications. A new, physically based, explicit
equation was derived, suitable for free surface flows, which ex-
presses the Darcy-Weisbach friction factor as a function of the
flow characteristics and the roughness height. This equation
was then used for the classification of flow domains with respect
to roughness.

Appendix

Basic Notions

Shear stress is known to be proportional to the square of the mean
flow velocity. This means that for determining the friction effect
on the flow, the velocity profile should be known. In fact, the full
velocity vector in three dimensions [three-dimensional (3D) ap-
proach] is required. Alternatively, the mean flow velocity with
respect to the vertical axis (in 2D approach), or the mean flow
velocity of the entire cross section (in 1D approach), are required.

According to the fluid dynamics theory, a boundary layer is
formed in the flow near the solid boundaries with its thickness
directly dependent on the flow velocity.

The basic assumptions related to this boundary layer, which
are appropriate for the derivation of the new friction equation,
are the following: (1) the thickness of the boundary layer is stable
and coincides with the entire flow profile; (2) for the laminar
flow, the velocity profile is parabolic; and (3) for the turbulent
flow, the flow velocity becomes zero at a distance from the
boundary equal to z0; a laminar viscous sublayer is formed be-
yond this distance with a thickness δ, while, within this sublayer,
the velocity profile is linear. In the remaining part of the layer, the
flow is turbulent and the velocity profile is logarithmic (law of
the wall).

Fig. 4. Friction factor versus the Reynolds number in an example using: (a) the Swamee and Jain (1976); and (b) the new friction equation.

Fig. 5. Comparison of stage-discharge curves obtained using the
proposed friction model and the Manning equation.
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As known, the shear velocity, V�, and Reynolds number RL,
are defined as follows:

V� ¼
ffiffiffiffiffi
τb
ρ

r
ð13Þ

RL ¼ V̄L
vs

ð14Þ

where V̄ = the mean flow velocity; L = the characteristic flow
length, such as hydraulic radius, water depth, pipe diameter, etc.;
and vs = the kinematic viscosity of the fluid. The use of Eq. (13)
implies that the momentum conservation equation for uniform,
steady flow is always valid.

Since the objective of this study was to examine the bottom
friction in a free-surface flow, modeled through a 2D approach, the
mean velocity with respect to the vertical (z) axis has to be deter-
mined. For this purpose, data from Nikuradse’s experiments are
used, which were initially derived in circular pipes with pressure-
driven flow.

The laminar flow velocity profile on the vertical axis z for a
circular pipe (where z ¼ 0 at the bottom of the pipe) and an infinite
width channel, are given by the following equations for pressure-
driven flow in pipes and free-surface flow, respectively:

Pressure-driven

V ¼ gSf
vs

�
Dz − z2

4

�
ð15Þ

Free-surface

V ¼ gSf
vs

�
2hz − z2

2

�
ð16Þ

where D = the pipe diameter; and h = the water depth.
By integrating the aforementioned equations with respect to the

corresponding cross section, the mean velocity V̄ for the pressure-
driven and free-surface flows are expressed, respectively:

Pressure-driven

V̄ ¼ gSf
vs

D2

32
ð17Þ

Free-surface

V̄ ¼ gSf
vs

h2

3
ð18Þ

Because of integration, the mean velocity for pressure-driven
flow refers to 1D, whereas, for free-surface flow, the integration
is made with respect to a unit cross section, and hence, the mean
velocity refers to 2D. In the latter case, the mean velocity can be
extended to a 1D approach, if the water depth is substituted by the
hydraulic radius R.

In turbulent flow, the velocity profile in the viscous sub-
layer is linear, whereas for the rest of the boundary layer it is
logarithmic, i.e.

V ¼ V�
κ
ln

�
z
z0

�
ð19Þ

where κ is the Von Karman constant equal to approximately 0.41
(White 1998). Instead of the logarithmic profile of velocity, power-
law profiles have been proposed by various researchers (e.g., Cheng
2007; Lee et al. 2013).

The mean velocity in the turbulent layer for pressure-driven and
free-surface flow can be expressed as follows:

Pressure-driven

V̄ ¼ V�
κ

ln

�
1

e1.5
D
z0

�
ð20Þ

Free-surface

V̄ ¼ V�
κ

ln

�
1

e
h
z0

�
ð21Þ

The relationship between δ and z0 can be determined experi-
mentally, using Nikuradse’s experimental data for pressure-driven
flow in pipes.

By adopting the Darcy-Weisbach equation and taking into
account Eqs. (17) and (18), the friction factor f of the Darcy-
Weisbach equation is expressed (only for laminar flow) as:

Pressure-driven

f ¼ 8
V2�
V̄2

¼ 64

RD
ð22Þ

Free-surface

f ¼ 8
V2�
V̄2

¼ 24

Rh
ð23Þ

where RD and Rh = the Reynolds numbers for pressure-driven and
free-surface flow, respectively.

Likewise, for the turbulent flow, the friction factor f is deter-
mined for pressure-driven and free-surface flow taking into account
Eqs. (20) and (21) as follows:

Pressure-driven

f ¼ 8
V2�
V̄2

¼ 8κ2h
ln



1
2e1.5

D
z0

�i
2

ð24Þ

Free-surface

f ¼ 8
V2�
V̄2

¼ 8κ2�
ln
�
1
e
h
z0

�	
2

ð25Þ

General Form of the Equation

As is known there are no clearly defined boundaries between
laminar and turbulent flow and between smooth and rough flow.
However, there are transition regimes for which the various equa-
tions in the related literature are not valid. Several relationships
have been proposed to describe the friction factor in these transition
regimes (e.g., Ligrani and Moffat 1986; Cheng and Chiew 1998;
Yalin and Da Silva 2001). As a consequence, the friction factor can
only be determined using conditions of the if-then-else type, in
combination with the appropriate equations.

The method quoted subsequently is based on the work of Cheng
(2008) and offers an explicit equation for the friction factor deter-
mination, which can be applied in pressure-driven pipe flows and is
valid unconditionally. According to this approach, f can be written
using the following mathematical formulation for transitioning
between one regime to another:

f ¼ faLf
ð1−αÞb
TS fð1−αÞð1−bÞTR ð26Þ

where fL = the laminar flow friction factor; fTS = the turbulent
hydraulically smooth flow friction factor; fTR = the turbulent
hydraulically rough flow friction factor; and a, b parameters,
which are estimated experimentally. The exponent a ranges from
0 (fully turbulent flow) to 1 (fully laminar flow). The exponent
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b ranges from 0 (fully turbulent rough flow) to 1 (fully turbulent
smooth flow).

The exponents a and b take the following forms:

α ¼ 1

1þ



R
RLT

�
m ð27Þ

b ¼ 1

1þ



R
RSR

�
n ¼

1

1þ



R
ηD
ks

�
n ð28Þ

where ks = the roughness height; and m, RLT , η, n should be
determined based on Nikuradse’s experimental data.

Preliminary Work

In this section, the parameters of a relationship are recalculated,
which is similar to Eq. (26), and is designed for free-surface flow.
The reason for following this process instead of adopting similar
equations from literature is to avoid the propagation of errors
due to smoothing approximations.

First, we recalculated the δ-z0 relationships and derived new
ones, which are very similar to those in the literature (e.g., Bates
et al. 2005). For hydraulically smooth flow, the following equation
is derived as follows:

1

z0
≈ 8.94

V�
vs

≈ 100.6
δ

ð29Þ

whereas for hydraulically rough flow:

1

z0
≈ 33.2

ks
ð30Þ

Regarding the modeling of the friction gradient through the
Darcy-Weisbach equation for pressure-driven flow, various rela-
tionships have been derived for both smooth and rough flow, which
are based on the Nikuradse’s experimental data. In the present
study, the following relationships have been derived and proposed
for smooth and rough flow, which are fitted to that data using the
GRG method:

1ffiffiffi
f

p ¼
�
0.75 ln

�
R

5.37

��
ð31Þ

1ffiffiffi
f

p ¼
�
0.88 ln

�
6.82

D
ks

��
ð32Þ

To derive an explicit relationship, valid under all flow regimes
for pressure-driven flow, Cheng’s method [Eq. (26)] is followed.
The optimization of the required parameters is achieved using
the GRG method as well, which produced the following values:
m≈ 8.4; RLT ≈ 2,712; η≈ 150; and n≈ 1.8. These values are
similar to those proposed by Cheng (2008), although Cheng used
relationships for smooth and rough flow that are different from
Eqs. (31) and (32).

Combining Eqs. (22), (31), (32), (27), and (28), the following
general form for the explicit friction factor determination, valid for
all conditions for pressure-driven flow, is derived as follows:

f¼
�
64

RD

�
a
�
0.75 ln

�
RD

5.37

��
2ðα−1Þb�

0.88 ln

�
6.82

D
ks

��
2ða−1Þð1−bÞ

ð33Þ

where

α ¼ 1

1þ � RD
2,712

�
8.4

ð34Þ

b ¼ 1

1þ



RD
150D

ks

�
1.8 ð35Þ

The graphical comparison between the results of the preceding
equation against Nikuradse’s experimental data is presented
in Fig. 6.

Derivation of the New Equation for Free-Surface Flow

Cheng (2008) extended his equation, which is similar to Eq. (33),
to the case with free-surface flow, assuming D ¼ 3.2h instead of
the theoretically expected relationship (D ¼ 4h) so as to take into
account the lateral embankments of the open channel flow. Because
of this, his equation is more appropriate for 1D modeling.

The main disadvantage of this type of approach is that, apart
from the laminar part which is physically based via Eq. (23), equa-
tions for both the turbulent hydraulically rough and smooth flow
require fitting on Nikuradse’s data. However, these data are ob-
tained from experiments performed under pressure-driven flow
conditions.

In this study, to construct similar relationships for free-surface
flow, the relationships between δ and z0 derived from pressure-
driven flow experiments, are used. Therefore, for smooth flow,
substituting Eqs. (14) and (29) in Eq. (25), the following equation
is derived:

1ffiffiffi
f

p ¼ 1ffiffiffi
8

p
κ
ln

�
Rh

ffiffiffi
f

p 8.94ffiffiffi
8

p
e

�
¼ 0.86 lnð1.16Rh

ffiffiffi
f

p
Þ ð36Þ

which, as implicit, the equation can be solved iteratively by
optimization methods such as the Newton-Raphson method. An
explicit form can be obtained through the Lambert W function
(Corless et al. 1996), which allows for expressing f as follows:

1ffiffiffi
f

p ¼ Rh

0.86eWð1.35RhÞ ð37Þ

where the quantity Wð1.35RhÞ is approximated by:

Fig. 6. Comparison between the proposed relationship for pressure-
driven flows and experimental data from Nikuradse (1933).
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Wð1.35RhÞ ¼ lnð1.35RhÞ − ln½lnð1.35RhÞ� þ
ln½lnð1.35RhÞ�
lnð1.35RhÞ

þ ln½lnð1.35RhÞ�2 − 2 ln½lnð1.35RhÞ�
2½lnð1.35RhÞ�2

ð38Þ

The error of the aforementioned explicit approximation in
comparison with the implicit form, solved through the Newton-
Raphson method, varies from a maximum value of 1.3% for small
Reynolds numbers and a decreasing trend for greater Reynolds
numbers Rh.

For the rough flow, substituting Eqs. (14) and (30) in Eq. (25),
the following equation is derived:

1ffiffiffi
f

p ¼ 1ffiffiffi
8

p
κ
ln

�
33.2
e

h
ks

�
¼ 0.86 ln

�
12.21

h
ks

�
ð39Þ

To develop the new friction equation, valid under all regimes
and appropriate for free-surface flow, a process that is similar to
that for the derivation of Eq. (33) is followed. In this context,
the components for smooth and rough turbulent flow have some
physical basis, due to the fact that the following assumptions
are made: (1) Eqs. (29) and (30) are valid; and (2) exponents a
and b are determined using Eqs. (34) and (35).

Therefore, the general explicit equation for the determination
of the friction factor, valid under all conditions of free-surface,
becomes:

f ¼
�
24

Rh

�
α
�
0.86eWð1.35RhÞ

Rh

�
2ð1−αÞb

8><
>:

1.34h
ln


12.21 h

ks

�i
2

9>=
>;

ð1−αÞð1−bÞ

ð40Þ

where

α ¼ 1

1þ



Rh
678

�
8.4 ð41Þ

b ¼ 1

1þ



Rh

150 h
ks

�
1.8 ð42Þ

The relationship between pipe diameter and hydraulic radius
is D ¼ 4R ¼ 4h.

In Fig. 7 the friction factor for the free surface flow is plotted
against Rh for a range of values of the relative roughness (h=ks)
using Eq. (40).
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