Technical Notes
May 7, 2024

Meso/Microscale Parameter Correlation Model of Sandstone Based on the Hoek–Brown Criterion and Parallel Bond Model

Publication: International Journal of Geomechanics
Volume 24, Issue 7

Abstract

Sandstone is an important and common engineering rock, and understanding the meso/macroscale mechanical properties of sandstones under different confinements are crucial for engineering safety. It is still difficult to correlate the mesoscale bonding parameters and macroscale mechanical behavior. In this paper, the Hoek–Brown parallel bond correlation model (HB-PBCM) is proposed based on the mesoscale analysis of the parallel bond model (PBM). The mathematical analytical expression of HB-PBCM is derived from the sensitivity analysis of the PBM parameters to the Hoek–Brown criterion strength parameters. The model is able to reproduce both the PBM and HB parameters obtained from laboratory tests. The parameters were validated via numerical tests, where the final strength and failure patterns of sandstones are shown to be consistent with those via real experiments. Combined with the numerical and experimental results, we find that the macroscale brittle‒ductile transition of sandstone is characterized by the alteration of the tensile-to-shear crack ratio, different mesoscale crack distributions, and mesoscale crack accumulation rates.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and codes generated or used during the study appear in the published article.

Acknowledgments

This research was funded by the National Key R&D Program of China (Grant Nos. 42293354, 42293351, 42277131, and 41977230).

References

Abousleiman, R., G. Walton, and S. Sinha. 2020. “Understanding roof deformation mechanics and parametric sensitivities of coal mine entries using the discrete element method.” Int. J. Min. Sci. Technol. 30 (1): 123–129. https://doi.org/10.1016/j.ijmst.2019.12.006.
Bahaaddini, M., G. Sharrock, and B. K. Hebblewhite. 2013. “Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression.” Comput. Geotech. 49: 206–225. https://doi.org/10.1016/j.compgeo.2012.10.012.
Bai, Y., and T. Wierzbicki. 2010. “Application of extended Mohr‒Coulomb criterion to ductile fracture.” Int. J. Fract. 161 (1): 1–20. https://doi.org/10.1007/s10704-009-9422-8.
Cai, M. 2010. “Practical estimates of tensile strength and Hoek–Brown strength parameter mi of brittle rocks.” Rock Mech. Rock Eng. 43 (2): 167–184. https://doi.org/10.1007/s00603-009-0053-1.
Cai, M., P. K. Kaiser, H. Uno, Y. Tasaka, and M. Minami. 2004. “Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system.” Int. J. Rock Mech. Min. Sci. 41 (1): 3–19. https://doi.org/10.1016/S1365-1609(03)00025-X.
Cheng, H., T. Shuku, K. Thoeni, P. Tempone, S. Luding, and V. Magnanimo. 2019. “An iterative Bayesian filtering framework for fast and automated calibration of DEM models.” Comput. Methods Appl. Mech. Eng. 350: 268–294. https://doi.org/10.1016/j.cma.2019.01.027.
Cheng, Y., and L. N. Y. Wong. 2020. “A study on mechanical properties and fracturing behavior of Carrara marble with the flat-jointed model.” Int. J. Numer. Anal. Methods Geomech. 44 (6): 803–822. https://doi.org/10.1002/nag.3040.
Coetzee, C. J. 2017. “Review: Calibration of the discrete element method.” Powder Technol. 310: 104–142. https://doi.org/10.1016/j.powtec.2017.01.015.
Cundall, P. A. 1971. “A computer model for simulating progressive largescale movements in blocky rock systems.” Proc. Symp. Int. Soc. Rock Mech. 2: 2–8.
De Simone, M., L. M. S. Souza, and D. Roehl. 2019. “Estimating DEM microparameters for uniaxial compression simulation with genetic programming.” Int. J. Rock Mech. Min. Sci. 118: 33–41. https://doi.org/10.1016/j.ijrmms.2019.03.024.
Edmond, J. M., and M. S. Paterson. 1972. “Volume changes during the deformation of rocks at high pressures.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 9 (2): 161–182. https://doi.org/10.1016/0148-9062(72)90019-8.
Hoek, E., and E. T. Brown. 1997. “Practical estimates of rock mass strength.” Int. J. Rock Mech. Min. Sci. 34 (8): 1165–1186. https://doi.org/10.1016/S1365-1609(97)80069-X.
Jiang, H., X. Wang, and Y. Xie. 2011. “New strength criteria for rocks under polyaxial compression.” Can. Geotech. J. 48 (8): 1233–1245. https://doi.org/10.1139/t11-034.
Kazerani, T., and J. Zhao. 2010. “Micromechanical parameters in bonded particle method for modelling of brittle material failure.” Int. J. Numer. Anal. Methods Geomech. 34 (18): 1877–1895. https://doi.org/10.1002/nag.884.
Lee, Y.-K., and S. Pietruszczak. 2021. “Limit equilibrium analysis incorporating the generalized Hoek–Brown criterion.” Rock Mech. Rock Eng. 54 (9): 4407–4418. https://doi.org/10.1007/s00603-021-02518-8.
Li, B., L. Guo, and F.-s. Zhang. 2014. “Macro‒micro investigation of granular materials in torsional shear test.” J. Cent. South Univ. 21 (7): 2950–2961. https://doi.org/10.1007/s11771-014-2262-3.
Li, R., G. Zhou, P.-Q. Mo, M. R. Hall, J. Chen, D. Chen, and S. Cai. 2021. “Behaviour of granular matter under gravity-induced stress gradient: A two-dimensional numerical investigation.” Int. J. Min. Sci. Technol. 31 (3): 439–450. https://doi.org/10.1016/j.ijmst.2021.03.003.
Li, X., G. Si, J. Oh, I. Canbulat, Z. Xiang, and T. Li. 2022. “A pre-peak elastoplastic damage model of gosford sandstone based on acoustic emission and ultrasonic wave measurement.” Rock Mech. Rock Eng. 55 (8): 4819–4838. https://doi.org/10.1007/s00603-022-02908-6.
Li, X., G. Si, C. Wei, J. Oh, and I. Canbulat. 2023. “Simulation of ductile fracture propagation using the elastoplastic phase-field damage method calibrated by ultrasonic wave velocity measurement.” Int. J. Rock Mech. Min. Sci. 161: 105296. https://doi.org/10.1016/j.ijrmms.2022.105296.
Liu, J., L. Qiao, Y. Li, Q. W. Li, and D. J. Fan. 2022. “Experimental study on the quasi-static loading rate dependency of mixed-mode I/II fractures for marble rocks.” Theor. Appl. Fract. Mech. 121: 103431. https://doi.org/10.1016/j.tafmec.2022.103431.
Liu, Y., Z. You, L. Li, and W. Wang. 2013. “Review on advances in modeling and simulation of stone-based paving materials.” Constr. Build. Mater. 43: 408–417. https://doi.org/10.1016/j.conbuildmat.2013.02.043.
Manouchehrian, A., and M. F. Marji. 2012. “Numerical analysis of confinement effect on crack propagation mechanism from a flaw in a pre-cracked rock under compression.” Acta Mech. Sin. 28 (5): 1389–1397. https://doi.org/10.1007/s10409-012-0145-0.
Martin, C. D., P. K. Kaiser, and D. R. McCreath. 1999. “Hoek–Brown parameters for predicting the depth of brittle failure around tunnels.” Can. Geotech. J. 36 (1): 136–151. https://doi.org/10.1139/t98-072.
Meng, F., H. Pu, T. Sasaoka, H. Shimada, S. Liu, T. K. M. Dintwe, and Z. Sha. 2021. “Time effect and prediction of broken rock bulking coefficient on the base of particle discrete element method.” Int. J. Min. Sci. Technol. 31 (4): 643–651. https://doi.org/10.1016/j.ijmst.2021.05.004.
Muhuri, S., and T. Scott. 2000. “Microfracturing in the brittle‒ductile transition in Berea sandstone.” In Proc., 4th North American Rock Mechanics Symp. Alexandria, VA: U.S. Rock Mechanics.
O’Sullivan, C. 2011. “Particle-based discrete element modeling: Geomechanics perspective.” Int. J. Geomech. 11 (6): 449–464. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000024.
Patel, S., and C. D. Martin. 2020a. “Effect of stress path on the failure envelope of intact crystalline rock at low confining stress.” Minerals 10 (12): 1119. https://doi.org/10.3390/min10121119.
Patel, S., and C. D. Martin. 2020b. “Impact of the initial crack volume on the intact behavior of a bonded particle model.” Comput. Geotech. 127: 103764. https://doi.org/10.1016/j.compgeo.2020.103764.
Potyondy, D. O. 2007. “Simulating stress corrosion with a bonded-particle model for rock.” Int. J. Rock Mech. Min. Sci. 44 (5): 677–691. https://doi.org/10.1016/j.ijrmms.2006.10.002.
Read, M. D., M. R. Ayling, P. G. Meredith, and S. A. F. Murrel. 1995. “Microcracking during triaxial deformation of porous rocks monitored by changes in rock physical properties, II. Pore volumometry and acoustic emission measurements on water-saturated rocks.” Tectonophysics 245 (3–4): 223–235. https://doi.org/10.1016/0040-1951(94)00236-3.
Tarasov, B., and Y. Potvin. 2013. “Universal criteria for rock brittleness estimation under triaxial compression.” Int. J. Rock Mech. Min. Sci. 59: 57–69. https://doi.org/10.1016/j.ijrmms.2012.12.011.
Vallejos, J. A., J. M. Salinas, A. Delonca, and D. M. Ivars. 2017. “Calibration and verification of two bonded-particle models for simulation of intact rock behavior.” Int. J. Geomech. 17 (4): 06016030. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000773.
Wang, Y., and F. Tonon. 2009. “Modeling Lac du Bonnet granite using a discrete element model.” Int. J. Rock Mech. Min. Sci. 46 (7): 1124–1135. https://doi.org/10.1016/j.ijrmms.2009.05.008.
Wang, Y., and F. Tonon. 2010. “Calibration of a discrete element model for intact rock up to its peak strength.” Int. J. Numer. Anal. Methods Geomech. 34 (5): 447–469. https://doi.org/10.1002/nag.811.
Xia, C., Z. Liu, and C. Zhou. 2021a. “Burger’s bonded model for distinct element simulation of the multi-factor full creep process of soft rock.” J. Mar. Sci. Eng. 9 (9): 945. https://doi.org/10.1016/10.3390/jmse9090945.
Xia, C., Z. Liu, and C. Zhou. 2021b. “A rock material micro-strength calibration model for bonded models in particle flow code.” IOP Conf. Series: Earth and Environmental Science. Bristol, UK: IOP Publishing Ltd.
Xia, C., Z. Liu, C. Y. Zhou, and L. H. Zhang. 2023. “A meso/macroscale theoretical model for investigating the large deformation of soft rock tunnels considering creep and anisotropic effects.” Rock Mech. Rock Eng. 56: 4901–4922. https://doi.org/10.1007/s00603-023-03306-2.
Yagiz, S. 2009. “Assessment of brittleness using rock strength and density with punch penetration test.” Tunnelling Underground Space Technol. 24 (1): 66–74. https://doi.org/10.1016/j.tust.2008.04.002.
Yang, X.-L. 2018. “Lower-bound analytical solution for bearing capacity factor using modified Hoek–Brown failure criterion.” Can. Geotech. J. 55 (4): 577–583. https://doi.org/10.1139/cgj-2016-0694.
Yang, X.-X., and W.-G. Qiao. 2018. “Numerical investigation of the shear behavior of granite materials containing discontinuous joints by utilizing the flat-joint model.” Comput. Geotech. 104: 69–80. https://doi.org/10.1016/j.compgeo.2018.08.014.
Yoon, J. 2007. “Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation.” Int. J. Rock Mech. Min. Sci. 44 (6): 871–889. https://doi.org/10.1016/j.ijrmms.2007.01.004.
Zhang, D., P. G. Ranjith, and M. S. A. Perera. 2016. “The brittleness indices used in rock mechanics and their application in shale hydraulic fracturing: A review.” J. Pet. Sci. Eng. 143: 158–170. https://doi.org/10.1016/j.petrol.2016.02.011.
Zhang, J.-c., Z.-n. Lin, B. Dong, and R.-x. Guo. 2021. “Triaxial compression testing at constant and reducing confining pressure for the mechanical characterization of a specific type of sandstone.” Rock Mech. Rock Eng. 54: 1999–2012. https://doi.org/10.1007/s00603-020-02357-z.
Zhang, S., S. Wu, and K. Duan. 2019. “Study on the deformation and strength characteristics of hard rock under true triaxial stress state using bonded-particle model.” Comput. Geotech. 112: 1–16. https://doi.org/10.1016/j.compgeo.2019.04.005.
Zhang, X.-p., Q. Zhang, and S. C. Wu. 2017. “Acoustic emission characteristics of the rock-like material containing a single flaw under different compressive loading rates.” Comput. Geotech. 83: 83–97. https://doi.org/10.1016/j.compgeo.2016.11.003.
Zheng, Z., W. C. Sun, and J. Fish. 2016. “Micropolar effect on the cataclastic flow and brittle-ductile transition in high-porosity rocks.” J. Geophys. Res.: Solid Earth 121 (3): 1425–1440. https://doi.org/10.1002/2015JB012179.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 24Issue 7July 2024

History

Received: Jul 5, 2023
Accepted: Jan 22, 2024
Published online: May 7, 2024
Published in print: Jul 1, 2024
Discussion open until: Oct 7, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Candidate, School of Civil Engineering, Sun-Yat-Sen Univ., No. 135, Xingang Xi Rd., Guangzhou 510275, PR China; Dept. of Civil and Environmental Engineering, Hong Kong Polytechnic Univ., Hong Kong 999077, China. Email: [email protected]
Associate Professor, School of Civil Engineering, Sun-Yat-Sen Univ., No. 135, Xingang Xi Rd., Guangzhou 510275, PR China (corresponding author). ORCID: https://orcid.org/0000-0003-0083-8754. Email: [email protected]
Ph.D. Candidate, School of Civil Engineering, Sun-Yat-Sen Univ., No. 135, Xingang Xi Rd., Guangzhou 510275, PR China. Email: [email protected]
Ph.D. Candidate, School of Civil Engineering, Sun-Yat-Sen Univ., No. 135, Xingang Xi Rd., Guangzhou 510275, PR China. Email: [email protected]
Cuiying Zhou [email protected]
Professor, School of Civil Engineering, Sun-Yat-Sen Univ., No. 135, Xingang Xi Rd., Guangzhou 510275, PR China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share